
Universal Liouville action as a renormalized volume
and its gradient flow

Martin Bridgeman∗, Kenneth Bromberg†, Franco Vargas Pallete‡, Yilin Wang§

April 17, 2023

Abstract

The universal Liouville action (also known as the Loewner energy) is a non-
negative Kähler potential on the Weil-Petersson universal Teichmüller space which
can be identified with the family of Weil-Petersson quasicircles via conformal welding.
This action is invariant under Möbius transformations, our main result shows that
it equals the renormalized volume of the non-compact subset of the hyperbolic
3-space bounded by the two Epstein-Poincaré surfaces associated with the quasicircle
in analogy to the theory for convex co-compact hyperbolic 3-manifolds. We also
study the gradient descent flow of the universal Liouville action with respect to the
Weil-Petersson metric and show that the flow always converges to the origin (the
circle). This provides a bound of the Weil-Petersson distance to the origin by the
universal Liouville action.

Contents

1 Introduction 2

2 Universal Weil-Petersson Teichmüller space 6
2.1 Universal Teichmüller space . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Kähler Structure and Weil-Petersson Teichmüller space . . . . . . . . . 7
2.3 Universal Liouville action . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Epstein-Poincaré surfaces 12
3.1 Epstein hypersurfaces associated with conformal metrics . . . . . . . . . 12
3.2 Explicit expression of Epstein maps in the upper-space model . . . . . . 13
3.3 Epstein-Poincaré map on a simply connected domain . . . . . . . . . . . 16

∗bridgem@bc.edu Boston College, Chestnut Hill, MA, USA
†bromberg@math.utah.edu University of Utah, Salt Lake City, UT, USA
‡franco.vargaspallete@yale.edu Yale University, New Haven, CT, USA
§yilin@ihes.fr Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France

1

bridgem@bc.edu
bromberg@math.utah.edu
franco.vargaspallete@yale.edu
yilin@ihes.fr


4 Renormalized volume for a Jordan curve 19
4.1 Disjoint Epstein-Poincaré surfaces . . . . . . . . . . . . . . . . . . . . . 19
4.2 Volume between the Epstein-Poincaré surfaces . . . . . . . . . . . . . . 20
4.3 Volume for smooth Jordan curves . . . . . . . . . . . . . . . . . . . . . . 21

5 Universal Liouville action as renormalized volume 23
5.1 Variation of the volume . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Variation of mean curvature and Schläfli formula . . . . . . . . . . . . . 30
5.3 Approximation of general WP curve . . . . . . . . . . . . . . . . . . . . 32

6 Gradient flow of the universal Liouville action 34

1 Introduction

For a Jordan curve γ ⊂ Ĉ, we let Ω and Ω∗ be the two connected component of Ĉ r γ,
ρΩ and ρΩ∗ be the Poincaré (hyperbolic) metric (with constant Gauss curvature −1)
in Ω and Ω∗ respectively. We consider Ĉ as the conformal boundary of the hyperbolic
3-space H3. In [10] C. Epstein gave a natural way to associate to each conformal metric
on Ĉ a surface in H3. We will recall the basics on Epstein surfaces in Section 3. Let
EpΩ : Ω→ H3 be the Epstein-Poincaré map, namely, the Epstein map associated with
the metric ρΩ, similarly for EpΩ∗ : Ω∗ → H3. The maps EpΩ, EpΩ∗ are smooth, extend
continuously to the identity map on γ, and are immersions almost everywhere. We call
their images as the Epstein-Poincaré surfaces ΣΩ and ΣΩ∗ . In particular, we note that
the Epstein-Poincaré surfaces are non compact and have infinite area. We show the
following results.

Proposition 1.1 (See Proposition 4.1). If γ is not a circle, then the two Epstein-Poincaré
surfaces ΣΩ and ΣΩ∗ are disjoint except at γ.

It follows directly from the definition of Epstein-Poincaré map that if γ is a circle, then
both ΣΩ and ΣΩ∗ are the totally geodesic plane bounded by γ with opposite orientation
(see Example 3.1).

Proposition 1.2 (See Corollary 3.13). When γ is asymptotically conformal (see Theo-
rem 3.10), there is a neighborhood of γ in Ω on which the Epstein-Poincaré map EpΩ is
an immersion and an embedding which fixes γ.

Quasicircles are in natural correspondence with points in the universal Teichmüller space
T (1), where we identify a quasicircle with its conformal welding homeomorphism. We
are interested in a special class of quasicircles, i.e. Weil-Petersson quasicircles, which
corresponds to the Weil-Petersson universal Teichmüller space T0(1). This space has been
studied extensively for it being the connected component of the unique homogeneous
Kähler metric on T (1) (i.e. the Weil-Petersson metric) [31], and have a big number of
equivalent descriptions from very different perspectives, see, e.g., [2, 7, 12,27,34,35].
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Weil-Petersson quasicircles are asymptotically conformal, so Propositions 1.1 and 1.2
allow us to define the signed volume between ΣΩ and ΣΩ∗ . A priori, this volume takes
value in (−∞,∞] (see Section 4.2 for more details). However, we show the following
result.

Theorem 1.3. If γ is a Weil-Petersson quasicircle, then the signed volume between the
two Epstein-Poincaré surfaces, denoted as V (γ), is finite.

See Proposition 4.5 for the proof for smooth Jordan curves. The result for general Weil-
Petersson quasicircles is obtained from an approximation argument, see Corollary 5.15.

Since T0(1) has a remarkably unique homogeneous Kähler structure, its Kähler potential
is of critical importance. Takhtajan and Teo defined the universal Liouville action S on
T0(1) and showed it to be such a Kähler potential [31]. In this work, we will consider the
universal Liouville action as defined for Jordan curves (see Section 2.3), and denote it
as S̃ for clarity. The functional S̃(γ) can actually be defined for arbitrary Jordan curve,
but it is finite if and only if γ is a Weil-Petersson quasicircle. Moreover, S̃ is invariant
under Möbius transformations of Ĉ (i.e. under the PSL2(C) action). As the PSL2(C)
action extends to orientation preserving isometries of H3, it is very natural to search for
a characterization of the class of Weil-Petersson quasicircles and an expression of S̃ in
terms of geometric quantities in H3.
A pioneering work of C. Bishop [2] shows that the class of Weil-Petersson quasicircles
can be characterized as Jordan curves bounding minimal surfaces in H3 with finite total
curvature. We obtain the following similar characterization in terms of Epstein-Poincaré
surfaces. In fact, the Epstein maps come with a well-defined unit normal ~n pointing
away from Ω and from Ω∗ respectively. The mean curvature H := Tr(B)/2 is defined
using the shape operator B(v) := −∇v~n.

Theorem 1.4 (See Corollary 3.9). We have for all Jordan curves,∫
ΣΩ
Hda =

∫
ΣΩ
|detB|da =

∫
D
|S (f)(z)|2 (1− |z|2)2

4 d2z

where f : D→ Ω is any conformal map, S (f) = f ′′′/f ′−(3/2)(f ′′/f ′)2 is the Schwarzian
derivative of f , da is the area form induced from H3, and d2z is the Euclidean area form.
In particular, ΣΩ has finite total mean curvature (and finite total curvature) if and only
if γ is a Weil-Petersson quasicircle.

However, no exact identity between the Kähler potential and geometric quantity in H3

was known. The main result of this work is to provide such an identity.

Definition 1.5. Let γ be a Weil-Petersson quasicircle. We define the renormalized
volume (or W-volume) associated with γ as

VR(γ) := V (γ)− 1
2

∫
ΣΩ∪ΣΩ∗

Hda ∈ (−∞,∞).
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The definition is reminiscent to the renormalized volume1 for quasi-Fuchsian manifolds
[16,30]. But we emphasize again that ΣΩ and ΣΩ∗ are non compact so the analysis has
additional technicality.

Theorem 1.6 (See Corollary 5.10 and Theorem 5.11). If γ is a C5,α Jordan curve with
α > 0, we have

S̃(γ) = 4VR(γ). (1.1)

If γ is a Weil-Petersson quasicircle, then we have S̃(γ) ≥ 4VR(γ).

Let us comment briefly on the proof of this theorem. It is easy to check that when γ is a
circle, both sides of (1.1) are zero. We then show under regularity assumptions that the
first variation of both sides are equal. The variation of S̃ was proved in [31], which we
recall in Theorem 2.1 (and improve in Proposition 2.4). The first variation of VR is more
laborious since the Epstein-Poincaré surfaces are not compact and are immersed only
almost everywhere. After administrating appropriate truncation (where we make use of
the regularity assumption), we re-derive the Schläfli formula which expresses the variation
of VR in terms of the mean curvature H, the metric I and the second fundamental form
II on Epstein surfaces (Theorem 5.1), then translate the variation formula into quantities
defined directly on Ω,Ω∗ ⊂ Ĉ (Theorem 5.7 and Corollary 5.9).
For a general Weil-Petersson quasicircle γ we use an approximation by equipotentials
(they are analytic curves and the universal Liouville action increases to that of γ). We
believe the identity (1.1) also holds for a general Weil-Petersson quasicircle. However,
our approximation argument only implies the inequality due to the lack of tightness for
the volume between the Epstein-Poincaré surfaces, see Section 5.3. We are tackling this.

The second topic of this work concerns the gradient descent flow of S with respect to the
Weil-Petersson metric. We proceed similarly as in Bridgeman-Brock-Bromberg [4]. For
[µ] ∈ T (1) we have a natural isomorphism T[µ]T (1) ' Ω−1,1(D∗).

Theorem 1.7 (See Theorem 6.1). The negative gradient of S with respect to the Weil-
Petersson metric is the vector field

V[µ] := −4S (gµ)
ρD∗

∈ Ω−1,1(D∗).

Moreover, the gradient descent flow of S starting from any point in T0(1) converges to
the origin [0] which corresponds to the round circle.

Using the gradient flow, we also obtain bounds of the Weil-Petersson distance on T0(1)
in terms of the universal Liouville action.

Theorem 1.8 (See Theorem 6.3). There exist universal positive constants c and K such
that for all [µ] ∈ T0(1), we have c(distWP([µ], [0])−Kc) ≤ S([µ]).

1Renormalized volume of a convex co-compact hyperbolic 3-manifold is referred to the difference
between the volume and half of the boundary area defined through a foliation near the ends. Our formula
is similar to the definition of the W-volume. However, in the convex co-compact case, they only differ by
a multiple of Euler characteristics of the boundary [16, Lem. 4.5].
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Finally, let us make a few remarks on the motivation behind this work and additional
comments on the relation with the literature.
S. Rohde and the last author introduced the Loewner energy for Jordan curves [24,33]
which is originally motivated from the large deviation theory of random fractal curves
Schramm-Loewner evolutions (SLE) [33,36]. In a certain sense, the Loewner energy is
the action functional which characterizes the law of SLE. It turns out quite surprisingly
that the Loewner energy equals exactly S/π as proved in [34]. Since we will not make
use of Loewner theory but only the fact of S is a Kähler potential on T0(1), we adopt the
terminology of universal Liouville action here. SLEs play a central role in the emerging
field of two-dimensional random conformal geometry. In particular, they provide a
mathematical description of the interfaces in statistical mechanics models [17,26,28] and
also a new way of thinking about 2D conformal field theory (CFT) [1, 8, 13,20]. On the
other hand, H3 is the Riemannian analog of AdS3 space. Our main result Theorem 1.6
can be interpreted as a holographic principle for the Loewner energy that is reminiscent
of the conjectural AdS3/CFT2 correspondence pioneered by Maldacena [18] (see also,
e.g., [19,37]). The authors are not aware of a (even conjectural) holographic principle for
SLE nor for random conformal geometry in general, this work may be a first step towards
this direction. We also mention [14] gives a holographic expression for determinants of
discrete Dirac operator on periodic bipartite isoradial graphs.
Renormalized volume as a Liouville action has been previously studied for convex co-
compact group actions in H3 (see work by Takhtajan-Teo [30] and Krasnov-Schlenker [16]),
or equivalently, for conformally compact hyperbolic metrics. A set of applications of this
study are bounds for the hyperbolic volume of mapping tori of pseudo-Anosov maps
in term of their Weil-Petersson translation length (by Brock [6]) or their entropy (by
Kojima-McShane [15]). This uses a bound (by Schlenker [25]) for renormalized volume in
terms of Weil-Petersson distance by studying the gradient of the Liouville action, similar
to our bound in Theorem 6.3. Moreover, we show in Theorem 6.1 that every flowline of
the gradient converges to the absolute minimum, in analogy to the result done by the
first three authors [5] for the relatively acylindrical case. This builds on work by the first
two authors and Brock [4], where they used the gradient flow to find the minimum of
renormalized volume for a boundary incompressible hyperbolic 3-manifold.

The paper is organized as follows: In Section 2 we collect all the basics about universal
Teichmüller space, its Kähler geometry, characterizations of the Weil-Petersson universal
Teichmüller space, and the universal Liouville action. In Section 3 we recall the definition
of Epstein surfaces and the correspondence between geometric quantities on the surface
versus on the conformal boundary. We also prove the immersion and embeddedness of
the Epstein-Poincaré surfaces associated with an asymptotically conformal curve. In
Section 4 we study the relation between the two Epstein-Poincaré surfaces associated
with the same curve. We show that they are disjoint (except for a circle), and that
if the curve is regular enough, the volume between the Epstein surfaces is finite. In
Section 5, we prove the variational formula for the renormalized volume and prove the
main theorem Theorem 1.6. The last section 6 is independent from Sections 3, 4 and 5
and deals with the gradient flow of the universal Liouville action.
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2 Universal Weil-Petersson Teichmüller space

2.1 Universal Teichmüller space

We first briefly recall a few equivalent descriptions of the universal Teichmüller space
T (1). Let Ĉ = C ∪ {∞}, D = {z , |z| < 1}, D∗ = Ĉ − D and S1 = ∂D. The group of
orientation preserving conformal automorphism of Ĉ is

Möb(Ĉ) = PSL2(C) =
{
A =

(
a b

c d

)
: a, b, c, d ∈ C, ad− bc = 1

}
/A∼−A

which acts on Ĉ by Möbius transformations z 7→ az + b

cz + d
. The subgroup preserving S1 is

Möb(S1) = PSU1,1 =
{
A =

(
α β

β̄ ᾱ

)
: α, β ∈ C, |α|2 − |β|2 = 1

}
/A∼−A

which is isomorphic to PSL2(R). There are a number of equivalent descriptions that we
will use.

Quasisymmetric maps: We write QS(S1) for the group of sense preserving quasisym-
metric homeomorphisms of S1. The universal Teichmüller space is

T (1) := Möb(S1)\QS(S1) ' {ϕ ∈ QS(S1), ϕ fixes −1,−i and 1}.

T (1) is endowed with a group operation given by the composition and the origin is the
identity map IdS1 .

Beltrami Differentials: Given a Beltrami differential

µ ∈ L∞1 (D∗) = {µ ∈ L∞(D∗), ||µ||∞ < 1},

we extend it to Ĉ by reflection, i.e. define for z ∈ D,

µ(z) = µ

(1
z

)
z2

z2 .

Let wµ : Ĉ→ Ĉ be the solution to the Beltrami equation ∂zwµ = µ∂zwµ fixing −1,−i
and 1. Then wµ preserves S1 and wµ|S1 ∈ QS(S1). Since every quasisymmetric circle
homeomorphism can be extended to a quasiconformal self-map of D, we have

T (1) = L∞1 (D∗)/∼
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where µ ∼ ν if and only if wµ|S1 = wν |S1 . We denote by Φ : L∞1 (D∗) → T (1) the
projection µ 7→ [µ]. Here the origin corresponds to [0].

Univalent maps: If instead we extend µ by 0 on D and let wµ be the unique solution
to wµz = µwµz fixing −1,−i and 1, then wµ is conformal on D. The map [µ] 7→ wµ|D
identifies T (1) with

{f : D→ Ĉ, univalent fixing −1,−i and 1, extendable to q.c. map of Ĉ}, (2.1)

since µ ∼ ν if and only if wµ = wν on D. The origin corresponds to IdD.

Quasicircles: By Riemann mapping theorem, the previous identification also gives

T (1) ' {γ quasicircle passing through − 1,−i, and 1} (2.2)

by the map [µ] 7→ γµ := wµ(S1). The origin corresponds to γµ = S1. We can recover the
quasisymmetric circle homeomorphism from γµ via conformal welding. Let Ω (resp. Ω∗)
denote the connected component of Ĉ r γµ where −1,−i, 1 are in the counterclockwise
direction of ∂Ω (resp. clockwise direction of ∂Ω∗). Let fµ = wµ|D : D → Ω and
gµ : D∗ → Ω∗ be the conformal maps fixing −1,−i, 1. Then,

wµ|S1 = g−1
µ ◦ fµ|S1

since gµ = wµ ◦w−1
µ |D∗ . We call g−1

µ ◦fµ|S1 the welding homeomorphism of the quasicircle
γµ passing through −1,−i, 1.

2.2 Kähler Structure and Weil-Petersson Teichmüller space

We first define the following spaces,

A∞(D∗) = {φ : D∗ → C holomorphic, sup
D∗
|φ|ρ−1

D∗ <∞},

A2(D∗) = {φ : D∗ → C holomorphic,
∫
D∗
|φ|2ρ−1

D∗ d2z <∞} ⊂ A∞(D∗),

where ρD∗(z) = 4/(1 − |z|2)2 is the hyperbolic density function and d2z = dx ∧ dy if
z = x + iy. The inclusion is shown in [31, Lem. I.2.1]. We define the similar spaces
A∞(D) and A2(D) (and also A∞(Ω) and A2(Ω)). We will also use the spaces of harmonic
Beltrami differentials defined as

Ω−1,1(D∗) = {ν̇ ∈ L∞(D∗), ν̇ = ρ−1
D∗ φ, φ ∈ A∞(D∗)};

H−1,1(D∗) = {ν̇ ∈ L∞(D∗), ν̇ = ρ−1
D∗ φ, φ ∈ A2(D∗)} ⊂ Ω−1,1(D∗).

The universal Teichmüller space T (1) has a canonical complex structure such that
Φ : L∞1 (D∗)→ T (1) is a holomorphic surjection. The holomorphic tangent space at the
origin is

T[0]T (1) = L∞(D∗)/ ker(D0Φ) ' Ω−1,1(D∗)
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where

ker(D0Φ) = N(D∗) := {ν̇ ∈ L∞(D∗) :
∫
D∗
ν̇φ = 0, ∀φ holomorphic and

∫
D∗
|φ|d2z <∞}

is the space of infinitesimally trivial Beltrami differentials.
The space L∞(D∗) has a natural group structure given by the associated quasiconformal
maps. We define λ = ν ? µ−1 if wλ = wν ◦ w−1

µ . Thus

λ =
(
ν − µ
1− µν

∂zwµ

∂zwµ

)
◦ w−1

µ .

We define Rµ to be right multiplication by µ on L∞(D∗). This descends to give a
map Rµ : T (1)→ T (1). Furthermore, the complex structure on T (1) is right-invariant.
Therefore, D0R[µ] : T[0]T (1) → T[φ]T (1) is a complex linear isomorphism between
holomorphic tangent spaces, and we obtain the identification of T[φ]T (1) ' Ω−1,1(D∗).
To define a Kähler metric on T (1), one needs to endow T (1) with a Hilbert manifold
structure. It is known since [3] that on the subspace M = Möb(S1)\Diff(S1) there is a
unique Kähler metric up to a scalar multiple. However, M is not complete under the
Kähler metric. Takhtajan and Teo extend the Hilbert manifold structure on T (1) by
defining the Hermitian metric on the distribution D([µ]) = D0R[µ](H−1,1(D∗)) ⊂ T[µ]T (1)
induced from H−1,1(D∗):

〈µ̇, ν̇〉 :=
∫
D∗
µ̇ν̇ρD∗d2z, ∀µ̇, ν̇ ∈ H−1,1(D∗).

They prove that this distribution is integrable and define T0(1) to be the connected
component containing [0] which is called the Weil-Petersson Teichmüller space. The
Hermitian metric defined above is called the Weil-Petersson metric. (One may draw the
similarity with the Weil-Petersson metric on Teichmüller spaces of a Fuchsian group Γ
where the integral is over D∗/Γ.) In terms of the four equivalent definitions of T (1), the
subspace T0(1) is characterized as follows:

• Quasisymmetric maps: Y. Shen [27] showed ϕ ∈ T0(1) if and only if ϕ is
absolutely continuous with respect to the arclength measure, and logϕ′ ∈ H1/2(S1),
the fractional Sobolev space of functions u such that

‖u‖2H1/2 :=
∫∫

S1×S1

∣∣∣∣u(ζ)− u(ξ)
ζ − ξ

∣∣∣∣2 dζdξ <∞. (2.3)

• Beltrami Differentials: It is shown in [31] that [µ] ∈ T0(1) if and only if it has a
representative µ ∈ L∞1 (D∗) such that∫

D∗
|µ(z)|2ρD∗(z)d2z <∞.

• Univalent maps: It is shown in [31, Thm. II.1.12] (see also [7]) that a univalent
function f : D→ Ĉ fixing −1,−i, 1 and extendable to a quasiconformal map of Ĉ,
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corresponds to an element of T0(1) via the identification (2.1) if and only if the
Schwarzian derivative

S (f) :=
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

satisfies ∫
D
|S (f)|2ρ−1

D d2z <∞. (2.4)

In other words, the Bers’ embedding β([µ]) := S (f) ∈ A2(D).
Furthermore, let f̃ = A ◦ f where A is a Möbius map sending Ω = f(D) to a
bounded domain (as a priori, Ω may contain ∞). Then f ∈ T0(1) if and only if∫

D
|N (f̃)|2d2z <∞ (2.5)

where N (f̃) = f̃ ′′/f̃ ′ is the pre-Schwarzian of f̃ . We note that the expression in
(2.4) is invariant under the transformation f → A ◦ f ◦B, for all A ∈ PSL2(C) and
B ∈ PSU1,1 but the expression in (2.5) is not invariant under such transformations.

• Quasicircles: A quasicircle passing through −1,−i, 1 which corresponds via (2.2)
to an element of T0(1) is called a Weil-Petersson quasicircle. It is easy to see that
if γ and γ̃ are two quasicircles passing through −1,−i, 1 and γ̃ = A(γ) for some
A ∈ PSL2(C), then γ̃ is Weil-Petersson if and only if γ is Weil-Petersson. Therefore,
we may extend the definition to say that a Jordan curve γ is Weil-Petersson if and
only if it is PSL2(C)-equivalent to a Weil-Petersson quasicircle passing through
−1,−i, 1.

2.3 Universal Liouville action

Takhtajan and Teo introduced the universal Liouville action S on T0(1) and showed it to
be a Kähler potential on T0(1). See [31, Thm. II.4.1]. We will consider it as a functional
on the space of Weil-Petersson quasicircles.
Indeed, let γ be a Jordan curve which does not pass through ∞. Let D and D∗ be
respectively the bounded and unbounded connected component of Ĉ r γ, f : D→ D and
g : D∗ → D∗ be any conformal maps such that g(∞) =∞ (note that D might not be Ω,
it can also be Ω∗, and f and g are different from the canonical maps fµ and gµ). Define

S̃(γ) :=
∫
D
|N (f)|2 d2z +

∫
D∗
|N (g)|2 d2z + 4π log |f ′(0)/g′(∞)| (2.6)

and is PSL2(C)-invariant (it can be seen via the identity with π times the Loewner
energy of γ [34]) and finite if and only if γ is a Weil-Petersson quasicircle. The universal
Liouville action S([µ]) for [µ] ∈ T0(1) is defined as S̃(A(γµ)) where γµ is the Weil-
Petersson quasicircle passing through −1,−i, 1 corresponding to [µ] and A ∈ PSL2(C) is
any Möbius transformation such that A(γµ) is bounded. The universal Liouville action
S satisfies the following properties:

• S([µ]) ≥ 0 for all [µ] ∈ T0(1) (see, e.g., [34, Thm. 1.4]);
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• S̃(γ) = 0 if and only if γ is a circle, or equivalently, [µ] = [0].

The first variation formula of S from [31] will be a key ingredient in our proofs. We
now state it for S̃. Let γ be the Weil-Petersson quasicircle passing through −1,−i, 1
corresponding to an element [µ] of T0(1). Let Ω and Ω∗ be the connected components
of Ĉ r γ as in Section 2.1. Let fµ : D → Ω and gµ : D∗ → Ω∗ be the conformal maps
fixing −1,−i, 1. Let ν̇ ∈ H−1,1(D∗) ' T[µ]T0(1), t ∈ (−‖ν̇‖−1

∞ , ‖ν̇‖−1
∞ ), wt : Ĉ→ Ĉ be the

solution fixing −1,−i, 1 to the Beltrami equation

∂z̄wt(z) =

0 z ∈ Ω,
t(gµ)∗ ν̇(z) ∂zwt(z) z ∈ Ω∗

where

(gµ)∗ ν̇(z) = ν̇ ◦ g−1
µ

(g−1
µ )′

(g−1
µ )′

.

We let γt = wt(γ) which is a small deformation of γ.

Theorem 2.1 ([31, Cor. II.3.9]). The universal Liouville action satisfies the following
first variation formula. Let ν̇ ∈ H−1,1(D∗) ' T[µ]T0(1),

(dS)[µ](ν̇) = d
dt
∣∣∣
t=0

S̃(γt) = 4 Re
∫
D∗
ν̇S (gµ)d2z = −4 Re

∫
Ω∗

((gµ)∗ν̇) S (g−1
µ ) d2z.

Remark 2.2. We note that compared to the formula in [31], we take the derivative of
S in the real tangent space (which is canonically isomorphic to the holomorphic tangent
space) while [31] takes derivative in the holomorphic tangent space and both derivatives
are related by

(dS)[µ](ν̇) = 2 Re ∂ν̇ S([µ]).

The last equality in Theorem 2.1 follows from a change of variable and the chain rule for
Schwarzian derivatives which shows

S (g−1) = −S (g) ◦ g−1(g−1′)2.

Remark 2.3. We choose ν̇ to be harmonic Beltrami differential as H−1,1(D∗) is iso-
morphic to T[µ]T0(1), in particular, supplementary to the infinitesimally trivial Beltrami
differentials N(D∗). Clearly, the variational formula also holds for ν̇ ∈ H−1,1(D∗)+N(D∗)
if
∫
|S (g)|d2z <∞, which is the case, e.g., whenever the curve γ is smooth.

Combining Theorem 2.1 and Remark 2.3 we obtain the following slightly modified version
of the variational formula for S̃. (We will not need the two-sided deformation, but it is
more natural when considering the Liouville action as defined for quasicircles and there is
almost no cost to add this.) We write N(Ω) (resp. N(Ω∗)) for the space of infinitesimally
trivial Beltrami differentials on Ω (resp. Ω∗).

Proposition 2.4. Let γ ⊂ C be a smooth Jordan curve. Let Ω and Ω∗ be the connected
components of Ĉ r γ. Let f : D → Ω and g : D∗ → Ω∗ be any conformal maps. Let
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ν̇1 ∈ H−1,1(Ω) + N(Ω) and ν̇2 ∈ H−1,1(Ω∗) + N(Ω∗) and wt be any solution to the
Beltrami equation

∂z̄wt
∂zwt

=

tν̇1, z ∈ Ω,
tν̇2, z ∈ Ω∗.

Then we have

d
dt
∣∣∣
t=0

S̃(wt(γ)) = −4 Re
(∫

Ω
ν̇1S (f−1)d2z +

∫
Ω∗
ν̇2S (g−1)d2z

)
.

The normalization of γ, wt, f and g are not needed as the formula is invariant under
other choices.

Proof. We only need to justify how the variation formula for one-sided quasiconformal
deformation implies the two-sided deformation.
We consider first the two-variable family of quasiconformal maps ws,t whose Beltrami
coefficients are sν̇1 in Ω and tν̇2 in Ω∗ for t, s ∈ R small enough. We have by the
composition rule of quasiconformal maps

ws,t = uts ◦ w0,t

where
∂z̄w0,t
∂zw0,t

=

0, z ∈ Ω,
tν̇2, z ∈ Ω∗,

∂z̄u
t
s

∂zuts
=

s(w0,t)∗ν̇1, z ∈ w0,t(Ω),
0, z ∈ w0,t(Ω∗).

From the one-sided variation we get

d
dt
∣∣∣
t=0

S̃(w0,t(γ)) = −4 Re
∫

Ω∗
ν̇2(z) S (g−1)(z)d2z

and

d
ds
∣∣∣
s=0

S̃(ws,t(γ)) = −4 Re
∫
w0,t(Ω)

(w0,t)∗ν̇1(z) S (f−1 ◦ w−1
0,t )(z)d2z

= −4 Re
∫

Ω
ν̇1(z) S (f−1)(z)d2z + 4 Re

∫
Ω
ν̇1(z) S (w0,t)(z)d2z. (2.7)

Lemma I.2.9 in [31] shows that there exists C such that

‖S (w0,t)‖2 =
(∫

Ω

|S (w0,t)|2
ρΩ

d2z

)1/2

≤ C|t|‖P (ν̇2)‖2 = C|t|
(∫

Ω
|P (ν̇2)|2ρΩd2z

)1/2

where P : H−1,1(Ω) + N(Ω)→ H−1,1(Ω) is the projection parallel to N(Ω). The second
term in (2.7) converges to 0 as t→ 0 by Cauchy-Schwarz inequality. Therefore we can
apply the chain rule and get

d
dt
∣∣∣
t=0

S̃(wt(γ)) = d
dt
∣∣∣
t=0

S̃(wt,t(γ)) = −4 Re
(∫

Ω
ν̇1S (f−1)d2z +

∫
Ω∗
ν̇2S (g−1)d2z

)
as claimed.

11



3 Epstein-Poincaré surfaces

3.1 Epstein hypersurfaces associated with conformal metrics

In [11] Epstein developed a formula for envelopes of horosphere in terms of conformal
metrics in Sn = ∂∞Hn+1. Here, the hyperbolic space Hn+1 is represented as the interior
of the unit ball Bn+1 with the metric:

ds2 = 4(dx2
1 + · · ·+ dx2

n+1)
(1− |x|2)2 ,

and Sn is represented by the unit sphere in Rn+1. Let ρSn denote the metric on Sn

induced by the Euclidean metric, namely, the round metric.
Given a domain Ω ⊆ Sn and a smooth function ϕ : Ω → R, we can associated the
conformal metric ρ := eϕρSn to the parametrized surface

Epρ : z ∈ Ω 7→ |Dϕ|
2(e2ϕ − 1)

|Dϕ|2(eϕ + 1)2 z + 2Dϕ
|Dϕ|2(eϕ + 1)2 ∈ Bn+1 = Hn+1, (3.1)

where D denotes the gradient with respect to ρSn . As proved in [11, Section 2], the map
Epρ solves the envelop equation of the family of horospheres {H(z, ϕ)}z∈Ω, where

H(z, ϕ) :=
{

eϕ(z)

eϕ(z) + 1
z + 1

eϕ(z) + 1
Y

∣∣∣∣Y ∈ Sn r {z}
}

(3.2)

is a horosphere centered at z and determined by the value of ϕ(z). Solving the envelop
equation means for all z ∈ Ω,

Epρ(z) ∈ H(z, ϕ) and Dz Epρ(TzSn) ⊆ TEpρ(z)H(z, ϕ). (3.3)

We can expand the Epstein map Epρ to the Epstein Gauss map Ẽpρ : Ω → T 1Hn+1

by defining Ẽpρ(z) as the outer normal vector to H(z, ϕ) at Epρ(z). The geodesic flow
in the direction −Ẽpρ(z) converges to z. We have that Ẽpρ is always an embedding.
In contrast, even though we have called Ep a parametrized surface, the map Epρ need
not to be an immersion. For instance, ϕ ≡ 0 implies that for any z ∈ Sn we have that
Epρ(z) = 0 while Ẽpρ(z) = (0,−z). Regardless, we will see in Section 5 that because we
can parametrize the normal bundle by Ẽpρ we will be able to treat the Epstein surface
as a parametrized surface.
Geometrically, we can use visual metrics to describe H(z, ϕ). Given x ∈ Hn+1, we define
the visual metric of x, denoted by νx, as the metric in Sn = ∂∞Hn+1 defined by the
pullback h∗(ρSn), where h is any isometry of Hn+1 so that h(x) = 0. The metric νx is
well-defined, as the stabilizer of 0 in Isom+(Hn+1) acts by isometries in Sn. Moreover, as
Isom+(Hn+1) acts conformally in Sn, the metric νx is conformal to ρSn , meaning that
we can write νx = eϕρSn for some smooth function ϕ : Sn → R that depends only on x.
Then it is a simple exercise to verify that H(z, ϕ) coincides with the locus

{x ∈ Hn+1 | νx(z) = eϕ(z)ρSn}, (3.4)
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and the inside of H(z, ϕ) is the locus

{x ∈ Hn+1 | νx(z) > eϕ(z)ρSn}. (3.5)

By definition, it is easy to verify that if x ∈ Hn+1, h ∈ Isom+(Hn+1) we have that
h∗(vh(x)) = vx. Hence it follows

Epρ = h ◦ Eph∗ρ (3.6)

where h∗ρ is the pull-back metric of ρ under h.

3.2 Explicit expression of Epstein maps in the upper-space model

Here and in the sequel, we restrict ourselves to the case n = 3. For the computation
purpose, it is convenient to use the upper-space model of the hyperbolic 3-space. Namely,

H3 = {(y, ξ) ∈ C× R>0}

with the hyperbolic metric

ds2 = |dy|
2 + dξ2

ξ2 .

The results presented in this section were obtained in [16] and [11]. We collect them here
for the readers’ convenience, also because our choice of convention of Epstein map, which
coincides with the horosphere envelop interpretation of the Epstein map as described in
Section 3.1, is slightly different than [16]. The difference of convention results mainly
in constant factors at various places. We choose to include the simple derivations or
examples to verify the constant factors.
Let eϕ|dz|2 be a smooth conformal metric on an open set U ⊂ C. The Epstein map
Epϕ := Epeϕ|dz|2 : z ∈ U 7→ (y, ξ) ∈ C× R+ = H3 is given explicitly by

ξ = 2e−ϕ/2
1 + |ϕz|2e−ϕ

, y = z + 2ϕze−ϕ
1 + |ϕz|2e−ϕ

= z + ξ · ψ, (3.7)

where
ψ := ϕz̄e

−ϕ/2, ϕz = ∂z̄ϕ.

The Epstein Gauss map is Ẽpϕ : U ⊂ C→ T1H3 such that the base point is Epϕ and the
vector component is ξ−→η where

−→η =
(

2ϕz̄e−ϕ/2
1 + |ϕz|2e−ϕ

,
1− |ϕz|2e−ϕ
1 + |ϕz|2e−ϕ

)
=
(

2ψ
1 + |ψ|2 ,

1− |ψ|2
1 + |ψ|2

)
(3.8)

is a Euclidean normal vector. It is straightforward to check that the geodesic flow
α(t) ∈ T1H3 starting from −Ẽpϕ(z) = (Epϕ(z),−~n) satisfies

α(t) = −Ẽpϕ+2t(z),

and the base point of α(t) tends to z as t→∞.
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Example 3.1. • If ϕ ≡ 2t, then for all z,

Epϕ(z) = (z, 2e−t) −→η = (0, 1).

• If eϕ = 4
(1+|z|2)2 , then for all z ∈ C, (y, ξ) = (0, 1).

• If ϕ = log 4 − 2 log(1 − |z|2), i.e., eϕ|dz|2 is the hyperbolic metric in D, then for
z = reiθ ∈ D,

Epϕ(reiθ) =
(

2r
1 + r2 e

iθ,
1− r2

1 + r2

)
= −→η .

We see (and one of the advantage of choosing this convention is) that Epϕ maps D
onto the totally geodesic plane in H3 bounded by ∂D.

Fix ϕ ∈ C∞(U,R). Let Σt denote the Epstein surface associated with the metric
eϕ+2t|dz|2, Σ = Σ0. Let I and It denote the first fundamental form on Σ and on Σt. Let
B(v) := −∇v~n be the shape operator on Σ, wherever Epϕ is an immersion. We let

II(u, v) := I(Bu, v) = I(u,Bv), III(u, v) := I(Bu,Bv)

and k−, k+ be the two eigenvalues of B, namely the principal curvatures on Σ. Let

H := 1
2 tr(B) = k− + k+

2
be the mean curvature on Σ.

Definition 3.2. We define the first, second, and third fundamental forms at infinity
associated with the surface Σ as

I∗ := I + 2II + III = I((id +B)·, (id +B)·);
II∗ := I− III = I((id +B)·, (id−B)·);

B∗ := (I∗)−1II∗ = id−B
id +B ;

III∗ := I∗(B∗·, B∗·) = I((id−B)·, (id−B)·) = I− 2II + III

where id is the identity operator. We define similarly H∗ = tr(B∗)/2.

Theorem 3.3 (See [16, Lem. 5.7, Thm. 5.8, Cor. 5.11]). We have

It = 1
4(e2tI∗ + 2II∗ + e−2tIII∗).

In particular,
4e−2tIt

t→∞−−−→ I∗.

Moreover, we have

I∗ = eϕ|dz|2, II∗ = ϑ dz2 + ϑ̄ dz̄2 + 2ϕzz̄ dzdz̄,

where ϑ = ϕzz − 1
2(ϕz)2. The eigenvalues of B∗ are given by

k∗± = 1− k±
1 + k±

= 2e−ϕ
(
ϕzz̄ ±

√
ϑϑ̄
)

= −K∗ ± 2e−ϕ
√
ϑϑ̄.
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In the last equality we used the identity

ϕzz̄ = 1
4∆ϕ = −1

2e
ϕK∗ (3.9)

where K∗ denotes the Gauss curvature of the metric I∗.

Example 3.4. When ϕ ≡ 0, we have It(y, ξ) = ξ−2|dy|2 = (e2t/4)|dy|2.

Corollary 3.5. Let da denote the area form induced by I, da∗ = eϕ d2z the area form
induced by I∗, we have da∗ = (1 + k+)(1 + k−) da,

Hda =
(

1− (K∗)2

4 + |ϑ|2e−2ϕ
)

da∗,

H∗ = k∗+ + k∗−
2 = −K∗.

and
k+k−da = (1− k∗+)(1− k∗−)

4 da∗ =
[

(1 +K∗)2

4 − e−2ϕ|ϑ|2
]

da∗.

Proof. It follows directly from Definition 3.2 that

k± = 1− k∗±
1 + k∗±

and da∗ = (1 + k+)(1 + k−) da.

We obtain from Theorem 3.3 and (3.9) that

Hda = k+ + k−
2(1 + k+)(1 + k−) da∗ = 1

4(1− k∗+k∗−)eϕ d2z

= 1
4(1− 4e−2ϕ(ϕ2

zz̄ − |ϑ|2))eϕ d2z

= 1
4(1− 4e−2ϕ((1

2e
ϕK∗)2 − |ϑ|2))eϕd2z

=
(

1− (K∗)2

4 + |ϑ|2e−2ϕ
)

da∗.

Similarly,

H∗ = k∗+ + k∗−
2 = 2e−ϕϕzz̄ = −K∗

and

k+k−da = k+k−
(1 + k+)(1 + k−)da∗ = (1− k∗+)(1− k∗−)

4 da∗

= 1
4(1 +K∗ − 2e−ϕ

√
ϑϑ̄)(1 +K∗ + 2e−ϕ

√
ϑϑ̄)da∗

=
[

(1 +K∗)2

4 − e−2ϕ|ϑ|2
]

da∗

as claimed.
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3.3 Epstein-Poincaré map on a simply connected domain

We apply the results to the special case of Epstein-Poincaré surfaces, namely, the
Epstein surfaces associated with the Poincaré (or hyperbolic, namely, K∗ ≡ −1) metric
ρΩ|dz|2 = eϕ|dz|2 on a simply connected domain Ω ( C. Let f : D→ Ω be a conformal
map. Then using the same notation as Theorem 3.3, we have

ϑ = S (f−1), k∗± = 1± 2‖S (f−1)‖

where
‖S (f−1)‖ := |S (f−1)|e−ϕ.

Remark 3.6. The fact that ϑ equals the Schwarzian derivative of a uniformization map
follows from a direct computation, this holds true if and only if the metric on Ω has
constant curvature. Moreover, from the Nehari bound, we have

‖S (f−1)(z)‖ ≤ 3/2, ∀z ∈ Ω.

From the computation above and Corollary 3.5 we obtain the following result.

Theorem 3.7 (Epstein-Poincaré surface [11, Prop. 7.4]). If ‖S (f−1)(z)‖ 6= 1, then EpΩ
is an immersion near z and the principal curvatures of ΣΩ at EpΩ(z) are given by

k± = −‖S (f−1)‖
‖S (f−1)‖ ± 1 . (3.10)

In particular, we have

Hda = |ϑ|2e−2ϕda∗ = ‖S (f−1)‖2ρΩ d2z. (3.11)

We have the total curvature∫
ΣΩ
|detB|da :=

∫
ΣΩ
|k−k+|da =

∫
Ω
e−2ϕ|ϑ|2da∗ =

∫
Ω
‖S (f−1)‖2ρΩ|dz|2 =

∫
ΣΩ
Hda.

We note that
∫
ΣΩ

is understood as the integral on the non-singular locus

{EpΩ(z) : ‖S (f−1)(z)‖ 6= 1}

which has full measure.

Example 3.8. If Ω = D, (3.10) shows k± ≡ 0 which is consistent with the fact that Σ
is a totally geodesic plane. See Example 3.1.

We obtain immediately the following consequence which is reminiscent to the results of
Bishop obtained in [2].

Corollary 3.9. A Jordan curve γ is a Weil-Petersson quasicircle if and only if

0 ≤
∫

ΣΩ
Hda =

∫
ΣΩ
|detB|da <∞.
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Proof. This follows from the characterization (2.4) of Weil-Petersson quasicircle, the
identity ∫

D
‖S (f)(ζ)‖2ρDd2ζ =

∫
Ω
‖S (f−1)(z)‖2ρΩd2z,

and Theorem 3.7.

The Epstein surface is uniquely determined and naturally associated with a simply
connected domain Ω. There are two connected components of γ in Ĉ, we will study
the relation between the two Epstein-Poincaré surfaces later in Section 4 and it will be
crucial to define the renormalized volume. However, let us first record some properties
of a single Epstein-Poincaré surface. We will use a few classical results from geometric
function theory.

Theorem 3.10. Let f be a conformal map from D onto a domain bounded by a Jordan
curve γ.

• See [22, Prop. 1.2]. For all ζ ∈ D, we have∣∣∣∣∣(1− |ζ|2)
2

f ′′(ζ)
f ′(ζ) − ζ̄

∣∣∣∣∣ ≤ 2. (3.12)

• See [22, Cor. 1.4]. For all ζ ∈ D, we have

1
4(1− |ζ|2)

∣∣f ′(ζ)
∣∣ ≤ dist(f(ζ), γ) ≤ (1− |ζ|2)

∣∣f ′(ζ)
∣∣ . (3.13)

• See [22, Thm. 11.1]. The following are equivalent:

(AC1) γ is asymptotically conformal;
(AC2) lim|ζ|→1−

f ′′(ζ)
f ′(ζ) (1− |ζ|2) = 0;

(AC3) lim|ζ|→1−‖S (f)(ζ)‖ = 0;

(AC4) f(ζ)− f(x)
(ζ − x)f ′(ζ) → 1 as ζ → x, x ∈ D and |z − x|1− |z| ≤ a (for all a > 0).

Example 3.11. Weil-Petersson quasicircles are asymptotically conformal. See, e.g.,
Corollary II.1.4 of [31].

Lemma 3.12. The Epstein-Poincaré map EpΩ : Ω → ΣΩ has the following explicit
expression. For z = f(ζ), ζ ∈ D, we have

ψ(z) = ϕze
−ϕ/2 = |f

′(ζ)|
f ′(ζ)

(
−f
′′(ζ)
f ′(ζ)

(1− |ζ|2)
2 + ζ

)
,

e−ϕ(z)/2 = 1
2 |f
′(ζ)|(1− |ζ|2)

ξ(z) = 2e−ϕ/2
1 + |ψ|2 = |f ′(ζ)|(1− |ζ|2)

1 +
∣∣− f ′′(ζ)

f ′(ζ)
(1−|ζ|2)

2 + ζ
∣∣2 ,

y(z) = z + ξ · ψ = f(ζ) +

(
−f ′′(ζ)
f ′(ζ)

(1−|ζ|2)
2 + ζ

)
f ′(ζ)(1− |ζ|2)

1 +
∣∣− f ′′(ζ)

f ′(ζ)
(1−|ζ|2)

2 + ζ
∣∣2 .
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Furthermore, it extends continuously to ∂D, namely, (y, ξ) −−−−→
ζ→eiθ

(f(eiθ), 0). In particu-

lar, EpΩ extends continuously to γ as the identity map.

Proof. We express ρΩ as

ρΩ = eϕ(z)|dz|2 = 4|dz|2
|f ′(f−1(z))|2(1− |f−1(z)|2)2 . (3.14)

In ζ variable,

e−ϕ(f(ζ)) =
(
|f ′(ζ)|(1− |ζ|2)

2

)2

, (3.15)

it gives
ϕ(f(ζ)) = log 4− log |f ′(ζ)|2 − 2 log(1− |ζ|2).

Taking derivative in ζ we obtain

ϕzf
′(ζ) = −f

′′(ζ)
f ′(ζ) + 2ζ

1− |ζ|2 ,

hence
ϕz = − f ′′(ζ)

(f ′(ζ))2 + 2ζ
f ′(ζ)(1− |ζ|2) .

Combining with equation (3.15) we get

ψ(z) = ϕze
−ϕ/2 = |f

′(ζ)|
f ′(ζ)

(
−f
′′(ζ)
f ′(ζ)

(1− |ζ|2)
2 + ζ

)
. (3.16)

The expression for ξ and y follows from their definition (3.7). We note that (3.12) implies
that |ψ| ≤ 2 and (3.13) implies that e−ϕ(z)/2 → 0 as ζ → eiθ. We obtain the limit
(y(z), ξ(z)) −−−−→

ζ→eiθ
(f(eiθ), 0).

Lemma 3.12 and condition (AC2) show that when γ is asymptotically conformal, we
have as ζ → ∂D,

y ◦ f(ζ)− f(ζ) ∼ ζf ′(ζ)(1− |ζ|2)
2 ' ζf ′(ζ)

|ζf ′(ζ)| dist(f(ζ), γ);

ξ ◦ f(ζ) ∼ |f
′(ζ)|(1− |ζ|2)

2 ' dist(f(ζ), γ).

Where “∼” means the ratio goes to 1 and “'” means the ratio is bounded from above
and below. And for all ζ ∈ D, Lemma 3.12, inequalities (3.12), and (3.13) show that

dist(f(ζ), γ)
5 ≤ |f

′(ζ)|(1− |ζ|2)
5 ≤ |ξ ◦ f(ζ)| ≤ |f ′(ζ)|(1− |ζ|2) ≤ 4 dist(f(ζ), γ). (3.17)

Corollary 3.13. If Ω is bounded by an asymptotically conformal curve γ, EpΩ ◦f is an
immersion and embedding in a neighborhood of ∂D.
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Proof. Since γ is asymptotically conformal, Theorem 3.7 and (AC3) imply that EpΩ ◦f
is an immersion in a neighborhood of ∂D.
Now we also show that EpΩ ◦f is also an embedding near the boundary. The inequalities
in (3.13) show that there exists δ0 > 0 such that if 1− |ζ| < δ0 then

1
3 dist(f(ζ), γ) ≤ |y(ζ)− f(ζ)|, ξ(ζ) ≤ 3 dist(f(ζ), γ) (3.18)

and the principal curvatures λ± of ΣΩ at EpΩ ◦f(ζ) are bounded by 1/2. Let Aδ := {ζ ∈
D : 1− |ζ| < δ}. We now show that EpΩ ◦f |Aδ is an embedding for small enough δ.
If it is not the case, then from (3.17) the self-intersection must occur to points with
comparable distance to γ. In other words, we have for every δ < δ0, there is ζ1 =
ζ1(δ), ζ2 = ζ2(δ) ∈ Aδ such that y(ζ1) = y(ζ2) and ξ(ζ1) = ξ(ζ2). Then we know from
(3.18) that |ζ1 − ζ2| → 0 as δ → 0. Let ηδ be a geodesic loop from (y(ζ1), ξ(ζ1)) to
(y(ζ2), ξ(ζ2)) on the Epstein surface, and for small δ, it is contained in the image of
EpΩ ◦f |Aδ0 . The proof of [11, Thm. 3.4] or [9, Prop. 4.15] then shows that it is not possible
since the principal curvatures on EpΩ ◦f |Aδ0 have modulus less than 1/2.

4 Renormalized volume for a Jordan curve

4.1 Disjoint Epstein-Poincaré surfaces

When γ is a circle, Example 3.1 shows that both Epstein surfaces coincide with the
geodesic plane bounded by γ.

Proposition 4.1. If γ is not a circle, then ΣΩ and ΣΩ∗ are disjoint in the interior.

Proof. We will use the horosphere envelop description of the Epstein surfaces described
in Section 3.1. It suffices to show that for all η ∈ Ω and η′ ∈ Ω∗, the horospheres at η
and η′ for the respective hyperbolic metric are disjoint.
By the invariance property (3.6) of Epstein map under Möbius transformation, we may
assume that η is the south pole s = (0, 0,−1) and η′ is the north pole n = (0, 0, 1).
Moreover, writing the Poincaré metrics ρΩ = eϕρS2 and ρΩ∗ = eψρS2 , we may also
assume that ψ(n) = 0 after possibly applying another Möbius transformation fixing n

and s. Hence, the horospheres H(n, ψ) = H(n, 0) passes through the origin (0, 0, 0) and
is contained in the upper half-ball of B3.
Let π : S2 r {n} → C be the stereographic projection from n sending s to 0 ∈ C and the
lower half-sphere S2

− onto D. The condition ψ(n) = 0 is equivalent to | limz→∞ g
′(z)| = 1

where g is a conformal map from D∗ = π(S2
+) to π(Ω∗) fixing ∞.

On the other hand, we have

π∗ρS2,θ = 4
(1 + |z|2)2 |dz|

2, π∗ρS2
−,θ

= 4
(1− |z|2)2 |dz|

2

where z = π(θ), and these expressions coincide when z = π(s) = 0 which shows

ρS2,s = ρS2
−,s
.
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Now let f be a conformal map from D onto π(Ω) fixing 0. We have

π∗ρS2,s = π∗ρS2
−,s

= ρD,0 = |f ′(0)|2ρπ(Ω),0 = |f ′(0)|2π∗ρΩ,s,

where the second and the last equalities follow from the definition of push-forward, and
the third equality follows from the property of the hyperbolic metric.
The following Lemma 4.2 shows that |f ′(0)| < 1. Therefore, ρΩ,s > ρS2,s and (3.4) and
(3.5) show that H(s, ϕ) is strictly contained in the inside of H(s, 0). In particular, H(s, ϕ)
is strictly contained in the lower half-ball and is disjoint from H(n, ψ).

The following lemma is a special case of the Grunsky inequality, see, e.g., [21, Thm. 4.1,
(21)] and [31, P. 70-71].

Lemma 4.2 (Grunsky inequality). Suppose that f : D→ C and g : D∗ → Ĉ are univalent
functions on D and D∗ such that f(0) = 0 and g(∞) =∞, and f(D) ∩ g(D∗) = ∅. Then
we have ∫

D

∣∣∣∣f ′(z)f(z) −
1
z

∣∣∣∣2 d2z +
∫
D∗

∣∣∣∣g′(z)g(z) −
1
z

∣∣∣∣2 d2z ≤ 2π log
∣∣∣∣g′(∞)
f ′(0)

∣∣∣∣ .
Equality holds if Cr {f(D) ∪ g(D∗)} has zero Lebesgue measure.

4.2 Volume between the Epstein-Poincaré surfaces

Let γ ⊂ Ĉ be an asymptotically conformal Jordan curve. We now define the volume
between ΣΩ and ΣΩ∗ . We cautiously note that both Epstein-Poincaré surfaces are non-
compact and may not be embedded. Without loss of generality, we assume that γ does
not contain ∞ ∈ Ĉ and use the upper space model of H3. We consider an approximation
of the hyperbolic volume form. For ε > 0, let

volε = 1ξ≥ε
voleucl
ξ3

where voleucl is the Euclidean volume form.
Let ϕγ be continuous map H3 → H3, such that ϕγ |Ω = EpΩ, ϕγ |Ω∗ = EpΩ∗ , and ϕγ |H3 is
differentiable. This is possible since EpΩ and EpΩ∗ extend to the identity map on γ. We
define

V2(γ)(ε) :=
∫
H3
ϕ∗γ volε .

This is the signed volume between the Epstein surfaces bounded by γ above level ε.
Since the boundary values of ϕγ are determined and ϕγ(H3)∩ {(y, ξ) : ξ ≥ ε} is compact,
we have V2(γ)(ε) is finite and independent from the choice of ϕγ . Since both Epstein
surfaces are disjoint (unless γ is a circle) by Proposition 4.1 and embedded near the
boundary by Corollary 3.13, without loss of generality, we assume further more that the
Jacobian of ϕγ is positive in a neighborhood Uγ of γ in H3. (If γ is a circle, then we
choose ϕγ such that the Jacobian is zero.) Now we define

lim
ε→0+

V2(γ)(ε) ∈ (−∞,∞]. (4.1)
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Notice that
∫
Uγ
ϕ∗γ volε increases as ε → 0+ and

∫
H3rUγ ϕ

∗
γ volε is constant for small

enough ε. Therefore the above limit exists, and the monotonicity and (3.6) also show
that the limit is invariant under actions of elements in PSL2(C) which do not send any
point of γ to ∞ ∈ Ĉ.

Definition 4.3. For an asymptotically conformal Jordan curve γ ⊂ Ĉ, we define the
signed volume between the Epstein-Poincaré surfaces V (γ) to be the limit in (4.1) applied
to the curve A(γ), where A is any element in PSL2(C) such that A(γ) does not passes
through ∞.

The above definition is clearly PSL2(C)-invariant.

4.3 Volume for smooth Jordan curves

In this subsection we will see if the Jordan curve γ is sufficiently smooth, then the map
EpΩ extends not only continuously to γ but also osculates to the totally geodesic plane
bounded by the circle osculating to the curve. This will be useful later to prove that the
volume between EpΩ and EpΩ∗ is finite, if γ is sufficiently smooth.
For a C2 curve γ(t) = x(t) + iy(t) in C, curvature is calculated by

kγ(t) = x′y′′ − y′x′′

((x′)2 + (y′)2)3/2 = 1
|γ′|3

Re
(
−iγ′γ′′

)
If γ is C2,α for some 0 < α < 1, Kellogg’s theorem implies that the conformal map
f : D → Ω extends to a C2,α homeomorphism D → Ω. Writing γ(θ) = f(eiθ) we have
that

γ′(θ) = if ′(eiθ)eiθ

γ′′(θ) = −f ′′(eiθ)− f ′(eiθ)eiθ.

Then it follows that

kγ(γ(θ)) =
−Re

(
f ′′(eiθ)f ′(eiθ)eiθ + |f ′(eiθ)|2

)
|f ′(eiθ)|3

=
−Re(f

′′(eiθ)
f ′(eiθ) e

iθ)− 1
|f ′(eiθ)| .

Define then the osculating circle, denoted by Cγ(θ), as the circle with center γ(θ) + iγ′(θ)
kγ(θ)

and radius | iγ
′(θ)

kγ(θ) |, oriented the same as γ. The circle Cγ(θ) is then tangent to γ at γ(θ),
and agrees with γ at this point of tangency up to second order. From this, it follows
that Cγ(θ) is invariant by parametrizations of γ.
Similarly, we can define the osculating plane, denoted by Pγ(θ), as the geodesic plane in
H3 so that the boundary of Pγ(θ) is Cγ(θ). Hence we will show that for γ sufficiently
smooth we have that EpΩ and Pγ(θ) agree up to second order.
For this, a straightforward computation using the explicit expression of the Epstein-
Poincaré map (Lemma 3.12) gives the following.
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Lemma 4.4. Assume that γ is C2,α. Using the parametrization (r, θ) 7→ f(reiθ) of the
domain Ω, near q = f(eiθ) ∈ γ, we have

lim
z→q

ψ(z) = |f
′(eiθ)|
f ′(eiθ)

eiθ;

lim
z→q
−→η (z) = lim

z→q

(
2ψ

1 + |ψ|2 ,
1− |ψ|2
1 + |ψ|2

)
=
(
|f ′(eiθ)|
f ′(eiθ)

eiθ, 0
)

;

∂r
−→η (q) =

(
0,−Re(f

′′(eiθ)
f ′(eiθ) e

iθ)− 1
)

;

∂θ
−→η (q) =

(
i
eiθf ′(eiθ)
|f ′(eiθ)|

(
Re(f

′′(eiθ)
f ′(eiθ) e

iθ) + 1
)
, 0
)
.

In particular, this implies that the Epstein-Poincaré surface, viewed as a surface embedded
in R3 near γ, is umbilic with curvature −(Re(f

′′(eiθ)
f ′(eiθ) e

iθ) + 1)|f ′(eiθ)|−1 = kγ(q) at q.

Proposition 4.5. Let γ be a C4,α Jordan curve in C. Then EpΩ and Pγ(θ) are tangent
at (γ(θ), 0) and agree up to order 2.

Proof. Since γ is C4,α then f : D→ C extended to ∂D as a C4,α map. Then the Epstein
map extends by identity on γ is a C2,α map on D by Lemma 3.12. We see then from
Lemma 4.4 that the continuous extension of −→η is the Euclidean unit outward orthogonal
vector to γ. Hence the extension of the Epstein map at γ has to agree up to first order
with the osculating plane Pq. To verify that they actually agree up to second order,
Lemma 4.4 shows that the Epstein-Poincaré surface is umbilic with the same curvature
in the Euclidean space as Pq.

Next we show that for sufficiently regular curves γ this volume is in fact finite.

Proposition 4.6. Let γ be a C5,α Jordan curve in C. Then V (γ) is finite.

Proof. Without loss of generality, we assume that γ : S1 → C is parametrized by arc-
length. Take ϕγ some continuous map H3 → H3 as before, meaning that ϕγ |Ω = EpΩ,
ϕγ |Ω∗ = EpΩ∗ , and ϕγ |H3 is differentiable. We take the following C4,α parametrization
of a neighbourhood U of γ in H3, denoted G : S1

s ×H2(a,b) → H3, by

G(s, a, b) = γ(s) + iaγ′(s) + be3

where e3 = (0, 0, 1). It is a straightforward calculation to see that the hyperbolic metric
in G-coordinates is given by

(1− ak(s))2

b2
ds2 + 1

b2
da2 + 1

b2
db2,

where k(s) is the signed curvature of γ given by γ′′(s) = ik(s)γ′(s). Hence the volume
form is given by

(1− ak(s))
b3

ds da db.
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If we assume that γ is C5,α, then the Epstein-Poincaré surfaces are C3,α up to the
boundary. This means that there are C3,α functions aΩ, aΩ∗ : S1

s × [0, ε0]b → R so that
the Epstein-Poincaré surfaces in the neighbourhood U of γ are given by G(s, aΩ(s, b), b),
G(s, aΩ∗(s, b), b). And since by Proposition 4.5 the Epstein-Poincaré surfaces agree up to
second order at γ, then there exists a constant C > 0 so that |aΩ(s, b)− aΩ∗(s, b)| ≤ Cb3.
Hence for small enough neighborhood U of γ, the integral

∫
U ϕ
∗
γ vol will be bounded by

V1(γ)(ε0) =
∫
S1

∫ ε0

0

∫ aΩ∗ (s,z)

aΩ(s,z)

(1− ak(s))
b3

da dbds.

This integral is well-defined and convergent since

∣∣∣∣ ∫ aΩ∗ (s,b)

aΩ(s,b)

(1− ak(s))
b3

da
∣∣∣∣ = 1

b3

∣∣∣∣aΩ∗(s, b)− aΩ(s, b)
∣∣∣∣.∣∣∣∣(aΩ(s, b) + aΩ∗(s, b)

2

)
k(s)− 1

∣∣∣∣
is bounded by a constant independent of (s, b). Hence V (γ) = limε→0+ V2(γ)(ε) is a
finite real value.

Definition 4.7. Let γ be a Weil-Petersson quasicircle in C. Then we define VR(γ), the
renormalized volume of γ, as

VR(γ) := V (γ)− 1
2

∫
ΣΩ∪ΣΩ∗

Hda

= V (γ)− 1
2

∫
Ω
‖S (f−1)(z)‖2ρΩd2z − 1

2

∫
Ω∗
‖S (g−1)(z)‖2ρΩ∗d2z.

(4.2)

Remark 4.8. The second identity follows from Theorem 3.7. A priori, VR(γ) ∈ (−∞,∞]
as V (γ) ∈ (−∞,∞] and the integrals of mean curvature are finite by Corollary 3.9.
Proposition 4.6 shows that if γ is C5,α, then VR(γ) <∞. From the PSL2(C)-invariance
of each summand in ((4.2)) we can easily see that VR is PSL2(C)-invariant.

5 Universal Liouville action as renormalized volume

Our objective in this Section is to prove that the renormalized volume in Definition 4.7
agrees up to a constant with the Loewner energy for C5,α curves.

5.1 Variation of the volume

For this subsection we consider a 1-parameter family (γt)t∈(−1,1) of C5,α Jordan curves
(α > 0). We will define a parametrization of the Epstein surfaces that allows us to
compute the derivative ∂

∂t |t=0V (γt). Since scalar multiplications are isometries of H3,
we can assume without loss of generality that all curves γt have Euclidean arclength
2π. Furthermore, for any sufficiently small ε we have that V (γt) = V1(γt)(ε) + V2(γt)(ε).
Moreover, we assume that V2(γt)(ε) ε→0−−−→ V (γt) converges uniformly in t.
Let ft : D → Ωt, gt : D∗ → Ω∗t be univalent functions. As the 1-parameter family γt
is C5,α, we can take the 1-parameter family of maps ft, gt to be C5,α on D and D∗
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D

D∗

H3

Ωt

Ω∗
t

ft

gt

(1− ε)S1

ht(z)

z

ft(z)

EpΩt
(ft(z))

gt(ht(z))

EpΩ∗
t
(gt(ht(z)))

Figure 1: Illustration of the two Epstein-Poincaré surfaces associated with the two
connected component of Ĉ r γt and the map ht.

respectively and in t parameters. Consider ε sufficiently small so that for z ∈ D with
|z| > 1−ε we have that EpΩt(ft(z)) belongs to the parametrized neighbourhood Uγt from
Proposition 4.6. Take the horizontal line Lt,z (horocycle centered at ∞ ∈ Ĉ) obtained by
varying the second G-coordinate in Uγt starting from EpΩt(ft(z)), and define ht(z) ∈ D∗
to be the point such that EpΩ∗t (gt(ht(z))) is the first point of intersection of the horizontal
line with EpΩ∗t . See Figure 1 for an illustration.
Clearly along ∂D the map ht agrees with g−1

t ◦ ft, and from the regularity of ft, gt and
the G-coordinates of Uγt we can see that the 1-parameter family of functions ht is C3,α

in 1− ε < |z| ≤ 1 and t-parameters. Moreover, we can make ε sufficiently small so that
ht is a diffeomorphism with its image.
For r sufficiently close to 1, define the cylindrical neighbourhood A(r) of γ0 as f0({r ≤
|z| ≤ 1})∪ g0(h0({r ≤ |z| ≤ 1})), which we parametrize by S1× [r, 1/r], sending (p, s) to
f0(sp) if s ≤ 1 and sending (p, s) to g0(h0(ps )) if s ≥ 1. These cylindrical neighbourhoods
are nested as r grows, and their intersection as r → 1− is γ0. Define as well Ω(r),Ω∗(r)
the components of CrA(r) in Ω0 and Ω∗0, respectively.
Define a 1-parameter family of homeomorphisms Ft : Ĉ→ Ĉ so that for z ∈ Ω0 we define
Ft(z) := ft(f−1

0 (z)), for z ∈ g0(ht({1− ε < |z| ≤ 1})) we define Ft(z) := gt(h−1
t (g−1

0 (z))),
and we extend Ft to the rest of Ω∗0 as a C3,α map in both Ω∗0 and t parameters. Let us
also fix F0 to be the identity. It follows then that Ft|Ω0 is a conformal map between
Ω0 and Ωt, and Ft|γ0 parametrizes γt. Given a parameter r so that 1− ε < r < 1, we
construct the family of piecewise smooth maps Er,t : S2 → H3 satisfying the following
properties:

(C1) In Ω(r),Ω∗(r) the map Er,t is defined as the composition of Ft with the Epstein-
Poincaré maps EpΩt ,EpΩ∗t of γt.

(C2) Considering the parametrization of A(r), for each p ∈ S1, Er,t({p}× [r, 1/r]) is the
straight R3 segment joining EpΩt(ft(z)) and EpΩ∗t (gt(ht(z))).

(C3) The curve Er,t(γ × {r}) is given by the image of a curve γr,t in Ω∗(γt) under the
Epstein-Poincaré map.

Given that under our conditions the Epstein-Poincaré maps agree up to order 2 at γt,
conditions (C1), (C2) and (C3) can be all satisfied for r sufficiently close to 1. For such
fixed r the map Er,t is piecewise smooth, and it is C3,α while restricted to Ω(r), A(r),Ω∗(r)
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on both those parameters and t.
We prove the following main theorem in this section.

Theorem 5.1. Let γt be a 1-parameter family of C5,α Jordan curves (α > 0). Then the
first derivative of the volume V (γt) is computed by

∂

∂t

∣∣∣∣
t=0

V (γt) =
∫

Ω
Ep∗Ω

(
δH + 1

4〈δI, II〉da
)

+
∫

Ω∗
Ep∗Ω∗

(
δH + 1

4〈δI, II〉da
)

where EpΩ,EpΩ∗ are the Epstein-Poincaré maps of Ω,Ω∗ (respectively); I, II, H,da are
the metric, second fundamental form, mean curvature and area form of the images of
EpΩ,EpΩ∗; and δ denotes first order variation.

As in the convex cocompact case (see for instance [23, 29]) the main idea is to prove the
analogous to the Schläfli formula for domains with piecewise smooth boundary by using
Stokes theorem. While in our case the region bounded by EpΩ and EpΩ∗ is non-compact
and hence a new difficulty has been introduced, we have already taken the first step
to deal with this by approximating with the (compact) region bounded by Er,t. Even
with this approximation, the map Er,t could fail to be a piecewise immersion, as the
Epstein-Poincaré maps define branched surfaces in general. This happens when the
principal curvatures at infinity are equal to ±1 at a given point, and hence the term
δH + 1

4〈δI, II〉da is not well-defined. Regardless, we will see (Lemma 5.2) that we have a
well-defined normal and a well-defined (parametrized) shape operator. This will allow us
to still establish a geometric identity (Proposition 5.4) that will express the variation of
volume as the integral of a well defined 2-form Tr(〈∇ξ(B·), DEp·〉) plus an exact form
(see (5.4)). The notation Tr(〈∇ξ(B·), DEp·〉) will be explained by the discussion following
(5.3), from where we will see that Tr(〈∇ξ(B·), DEp·〉) is the continuous extension of
Ep∗Ω,Ω∗

(
δH + 1

4〈δI, II〉da
)
to the non-immersed points. Then after using Stokes theorem

and making r → 1−, we will obtain the identity of Theorem 5.1 by verifying that all
other integrals (both from the approximation by Er,t and Stokes theorem) go to 0.
We first address the definition of the normal and (parametrized) shape operator for Er,t.

Lemma 5.2. Along each Ω(r), A(r),Ω∗(r), on the image of Er,t(p) there is a well-defined
vector ~n that is normal to the image of DEr,t. Such normal vector ~n varies piecewise
C3,α on r, t, p, and more precisely it is C3,α while restricting p to either Ω(r), A(r),Ω∗(r).
Moreover, there is a piecewise C2,α family of linear maps Br,t(p) : R2 → ~n⊥(Er,t(p)) so
that at any point where Er,t is an immersion, Br,t agrees with the pullback by Er,t of the
shape operator of the image of Er,t.

Proof. For Ω(r),Ω∗(r) the existence of ~n follows from the construction of the Epstein-
Poincaré map, see (3.8), and from the map Fr,t being piecewise C3,α. For A(r), each
curve Er,t(γ × {r}) is embedded for r sufficiently close to 1, as it converges to Ft(S1) as
r → 0. Since the segment Er,t({p} × [−r, r]) belongs to a perpendicular of γt that varies
smoothly on the data, we define ~n as the orthogonal vector to this line and Er,t(γ ×{r}),
taken so that the third coordinate of ~n is positive. This makes ~n well-defined for r
sufficiently close to 1.
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For Ω(r),Ω∗(r), Br,t(p) is clearly defined as the shape operator in Er,t coordinates at
points where Er,t is an immersion. This is not well-defined at points of Ω(r),Ω∗(r)
where the curvatures at infinity are ±1, since by the duality the metric I(X,Y ) =
1
4I
∗(X + B∗X,Y + B∗Y ) will vanish precisely at directions X at infinity whenever

B∗X = −X. In particular X is an eigenvalue of B∗, which remains true if we rescale the
metric by a constant factor. Rescale then the conformal metric by a factor eε, so now
the map Er,t becomes an embedding and |BX| = (1 + e−ε)|X|∗. Sending ε→ 0 we see
that we can extend Br,tX as a vector of norm 2 orthogonal to ~n for |X|∗ = 1.
For the region A(r) we can define Br,t by observing that the map Er,t is the composition
of a smooth map into the horizontal lines described in step (C2). The union of these lines
are immersed for r sufficiently close to 1, and hence have a well-defined shape operator.
Hence we define Br,t as the pullback of such shape operator by Er,t.
It is clear form the definitions that ~n and Br,t are piecewise C3,α, C2,α respectively.

Remark 5.3. While Er,t may fail in general to be a piecewise immersion, it is an
immersion while restricted to the edge locus ∂A(r). Moreover, from the definition of the
normal vector ~n we have that the dihedral angles are well-define and vary C2,α along
t and the base point. When appropriate, we will simplify notation by dropping r, t
sub-indices.

The following proposition generalizes the key formula to prove the differential Schlälfi-
formula (see [29, Proposition 5]). Let ∂

∂t |t=0Er,t = ξ be the piecewise defined vector field
by the first order variation on t, and let ∇ denote the Levi-Civita connection of H3.

Proposition 5.4. For any p ∈ Ĉ r γt and u, v ∈ R2 we have

〈∇ξ(Bu), DEpv〉 = −〈∇DEpv∇ξ~n,DEpu〉+ 〈R(ξ,DEpu)~n,DEpv〉 (5.1)

where we follow the convention R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z.

Proof. Let us verify first that we have the equality

〈Br,tu,DEr,tv〉 = −〈∇DEr,tu~n,DEr,tv〉

Where Er,t is an immersion, this follows from the relation between the shape operator
and the second fundamental form. In directions when DEr,t fails to be injective both
sides vanish. Taking then derivative in t we have

〈∇ξBu,DEv〉+ 〈Bu,∇ξv〉 = −〈∇ξ∇DEr,tu~n,DEr,tv〉 − 〈∇DEr,tu~n,∇ξDEr,tv〉
= −〈∇DEr,tu∇ξ~n,DEr,tv〉+ 〈R(ξ,DEpu)~n,DEpv〉 − 〈∇DEr,tu~n,∇ξDEr,tv〉

(5.2)

If E is an immersion we have that 〈Bu,∇ξv〉 = −〈∇DEr,tu~n,∇ξDEr,tv〉. Since we can
extend the equality by continuity, we have then

〈∇ξBu,DEv〉 = −〈∇DEu∇ξ~n,DEv〉+ 〈R(ξ,DEpu)~n,DEpv〉

as claimed.
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Remark 5.5. At points where E is an immersion, we can write 〈∇ξBu,DEv〉 as

〈∇ξBu,DEv〉 = 〈B′(DEu), DEv〉+ 〈∇Buξ,DEv〉

which is the formula appearing in [29, Proposition 5], where B′ is the derivative of the
shape operator in the immersed surface image.

The next step involves tracing the formula (5.1) with respect to the metric in the image
of Er,t and multiply it by its area form (both induced from H3). Note that the trace
of 〈R(ξ,DEp·)~n,DEp·〉 is −2〈ξ, ~n〉E∗da, which is a multiple of the 2-form that appears
in the variational formula for the volume enclosed by the maps Er,t. The remaining
terms in (5.1) lead to the Schläfli formula we are interested in. Hence our next concern
is how to perform this trace when Er,t is not am immersion. Let us address first Er,t in
Ω(r),Ω∗(r).
For U ⊆ C, ϕ ∈ C∞(U) denote by Eϕ, Ẽϕ the Epstein map and Epstein Gauss map
for eϕ|dz|2, respectively. We say that a 2-tensor T : C∞(U) → Λ2,0(U) is compati-
ble if T is a differentiable map so that for any ϕ ∈ C∞(U), x ∈ U, v ∈ R2 so that
〈(DEϕ)x·, (DEϕ)xv〉 ≡ 0, we have that T (ϕ)x(·, v) ≡ 0. Examples of compatible maps
are each summand in formula (5.1).
For any compatible T we define Tr(T ) ∈ Ω2(U) as

Tr(T (ϕ))x := lim
ε→0

E∗ϕ+ε(tr((E−1
ϕ+ε)∗T (ϕ+ ε)x)daε), (5.3)

where tr, daϕ+ε are respectively the trace and area form on the orthogonal complement
of Ẽϕ+ε. To see that this limit is well defined, observe that for ε 6= 0 sufficiently small
we have that Eϕ+ε is an immersion at x ∈ U . In particular, the limit agrees with
E∗ϕ(tr((E−1

ϕ )∗T )da) if Eϕ is an immersion at x ∈ U . As an application of Theorem 3.3
we can take orthonormal u, v ∈ R2 so that uε := (DEϕ+ε)xu, vε := (DEϕ+ε)xv ∈ T 1H3

are orthogonal for all ε. Hence

E∗ϕ+ε(tr((E−1
ϕ+ε)∗T (ϕ+ ε)x)daε)

=
( 1
|uε|2

T (ϕ+ ε)(u, u) + 1
|vε|2

T (ϕ+ ε)(v, v)
)
|uε|.|vε| dxdy

and the limit (5.3) exists even if either or both |uε|, |vε| go to 0 linearly with ε, since in that
case we have that the respective T (ϕ)(u, u), T (ϕ)(v, v) vanishes and the corresponding

1
|uε|T (ϕ+ ε)(u, u), 1

|vε|T (ϕ+ ε)(v, v) converges to a derivative of T .
For the terms in (5.1) we can make this computation explicit for −〈∇DEpv∇ξ~n,DEpu〉
and 〈R(ξ,DEpu)~n,DEpv〉. Observe that at points where E is an immersion we have that
Tr(−〈∇DEpv∇ξ~n,DEpu〉) is equal to −E∗(div(∇ξ~n)da) = E∗(d(〈.,∇ξ~n〉)) = −d(i∇ξ~n),
where i∇ξ~n is the 1-form defined by u 7→ 〈DEpu,∇ξ~n〉. Hence for all points we get
Tr(−〈∇DEpv∇ξ~n,DEpu〉) = −d(i∇ξ~n).
For 〈R(ξ,DEpu)~n,DEpv〉 = −〈ξ, ~n〉〈DEpu,DEpv〉, we can see that this symmetric
tensor is the pullback of a symmetric tensor in ~n⊥. Then Tr(〈R(ξ,DEpu)~n,DEpv〉 =
−2〈ξ, ~n〉E∗da, which vanishes if E fails to be an immersion.
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Lemma 5.6 (See [29]). At points where E is an immersion, 1
2 Tr(〈∇ξ(B·), DEp·〉) agrees

with the pullback by E of the form (δH + 1
4〈δI, II〉) da.

We now relate the variation of the volume with Tr(〈∇ξ(B·), DEp·〉). Following (5.3) and
(5.1) we obtain

Tr(〈∇ξ(B·), DEp·〉) = −d(i∇ξ~n)− 2〈ξ, ~n〉E∗da. (5.4)

For Er,t in A(r), we can establish and trace (5.1) in the embedded surface that contains
the image of Er,t (for r sufficiently close to 1) and then take the pullback by Er.t.
Let V2(r, t) be defined as the volume bounded by Er,t. Namely, extend Er,t : S2 = Ĉ→ H3

as a map from the closed ball B3 and define

V2(r, t) :=
∫
B3
E∗r,t(volH3)

By Stokes, this definition does not depend on the specific extension of Er,t to B3. Since
Er,t vary C3,α as piecewise maps from Ω(r),Ω∗(r), A(r), we can take the extension to
vary C3,α on t and check that ∂tV2(r, t) is given by

∂tV2 =
(∫

Ω(r)
+
∫

Ω∗(r)
+
∫
A(r)
−〈ξ, ~n〉E∗da

)
where ξ = ∂tEr,0, ~n is the normal vector described in Lemma 5.2 and da is the area form
of the orthogonal plane to ~n. The negative sign is due to the fact that we are taking
normal vector ~n pointing inward the region bounded by Er,t.
Applying (5.4) we have then

∂tV2 =
(∫

Ω(r)
+
∫

Ω∗(r)
+
∫
A(r)

1
2 Tr(〈∇ξ(Bu), DEpv〉) + 1

2d(i∇ξ~n)
)

Applying Stokes theorem for 1
2d(i∇ξ~n) yields the integral of 1

2 i∇ξ~n over each boundary
component. Since Er,t is embedded along ∂A(r), then as in [29] we have that along
∂A(r), we have

i∇ξ(~nΩ(r)) + i∇ξ(~nA(r)) = ∂θ+

∂t
E∗d`

i∇ξ(~nΩ∗(r)) + i∇ξ(~nA(r)) = ∂θ−

∂t
E∗d`

where θ+(x) (respectively θ−(x)) is the exterior dihedral angle of the planes orthogonal
to ~nΩ(r), ~nA(r) at E(x) (respectively ~nΩ(r)∗ , ~nA(r) at E(x)), and d` is the length form in
H3.
Applying then Stokes for ∂tV2 we get

∂tV2 =
(∫

Ω(r)
+
∫

Ω∗(r)
+
∫
A(r)

1
2 Tr(〈∇ξ(B·), DEp·〉)

)
+ 1

2

(∫
∂Ω(r)

∂θ+

∂t
E∗d`+

∫
∂Ω∗(r)

∂θ−

∂t
E∗d`

)
.

(5.5)
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Proof of Theorem 5.1. Following Lemma 5.6 and Equation (5.5), we only need to prove
that

lim
r→0

∫
A(r)

1
2 Tr(〈∇ξ(B·), DEp·〉) = 0 and

lim
r→0

1
2

(∫
∂Ω(r)

∂θ+

∂t
E∗d`+

∫
∂Ω∗(r)

∂θ−

∂t
E∗d`

)
= 0.

For the first term, observe that A(r) belongs to the surface described in (C2). These
families of surfaces can be described by

(r, s)→ (x(r, s, t), y(r, s, t), z(r, s, t)),

where r, s parametrize the surface as in (C2) for γt. This parametrization extends
smoothly for r = 1 towards the boundary of H3 by making z(1, s, t) ≡ 0. Moreover, given
(C1) and Lemma 3.12 we have that z(r, s, t) = O((1− r)).
Hence the first and second fundamental form (as well as their first order variations) and
the inverse of the first fundamental form are of order at most (1− r)−2, from which the
terms H, δH, 〈δI, II〉 are uniformly bounded. As the area of A(r) decays at least of the
order of 1− r, we have that

lim
r→1−

∫
A(r)

1
2 Tr(〈∇ξ(B·), DEp·〉) = 0

Likewise, the functions θ± that take each (r, s, t) to the angle between Ω(r),Ω∗(r) and
A(r) at (x(r, s, t), y(r, s, t), z(r, s, t)), extend smoothly to r = 1 as right angles. Hence
in particular ∂θ±

∂t = O((1− r)). This is not enough for the desired limit, as the curves
∂Ω(r),Ω∗(r) have length comparable to (1− r)−1. What we can rather do is use again
that the Epstein-Poincaré surfaces agree up to second order to use parametrizations
γ±ε (s) satisfying (ε = (1− r)) ∥∥∥∥dγ+

ε

ds
(s)− dγ−ε

ds
(s)
∥∥∥∥ ≤ Cε2

|θ′(γ+
ε (s)) + θ′(γ−ε (s))| ≤ Cε2

(5.6)

for some uniform constant C > 0. Then since the last coordinate of γ±ε is O(ε), we have
that for some uniform constant C > 0∣∣∣∣ ∫

∂Ω(r)

∂θ+

∂t
E∗d`+

∫
∂Ω∗(r)

∂θ−

∂t
E∗d`

∣∣∣∣
≤ C

∫
S1

∣∣∣∣θ′(γ+
ε (s))
ε

∣∣∣∣.∥∥∥∥dγ+
ε

ds

∥∥∥∥+
∣∣∣∣θ′(γ−ε (s))

ε

∣∣∣∣.∥∥∥∥dγ−εds
∥∥∥∥ds

≤ 1
ε

∫
S1
|θ′(γ+

ε (s))|.
∥∥∥∥dγ+

ε

ds
(s)− dγ−ε

ds
(s)
∥∥∥∥+ |θ′(γ+

ε (s)) + θ′(γ−ε (s))|.
∥∥∥∥dγ−εds

∥∥∥∥ds
(5.7)

goes to 0 as ε→ 0 uniformly in t.
We define then V2(r, t) using the parameters of Proposition 4.6, so that V (γt) = V1(r, t) +
V2(r, t) for any r sufficiently small. For the parametrized region in V2(r, t) we can see
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that the t derivatives of the functions f, g in the proof of Proposition 4.6 agree as well up
to order 2 (in z variable), so by the same argument we have that limr→0 ∂tV1(r, 0) = 0.
As for any r small we have that ∂tV (γt) = ∂tV1(r, t) + ∂tV2(r, t), we send r to 0 on the
right hand side to obtain

∂

∂t

∣∣∣∣
t=0

V (γt) =
∫

Ω
+
∫

Ω∗

1
2 Tr(〈∇ξ(B·), DEp·〉)

which completes the proof by Lemma 5.6.

5.2 Variation of mean curvature and Schläfli formula

The following result is proved by Krasnov-Schlenker see [16, Cor. 6.2] for the renormalized
volume of convex co-compact manifolds. We adapt it to the renormalized volume
associated with a smooth Jordan curve.

Theorem 5.7. We have the first order variation of the VR

δVR(γ) = −1
4

∫
Ω∪Ω∗

δH∗ + 1
2 〈δI

∗, II∗0〉 da∗

where II∗0 = ϑ dz2 + ϑ̄ dz̄2 is the traceless part of II∗, 〈A,B〉 stands for tr[(I∗)−1A(I∗)−1B].

Proof. By Definition 4.7 and Remark 4.8, we can express δVR as the integral of smooth
2-forms in Ω,Ω∗, so that at points where the respective Epstein-Poincaré maps are
immersions these forms are given by the pullback of the form

(δH + 1
4〈δI, II〉) da− 1

2(δHda−Hδ(da))

by the respective Epstein-Poincare map. Following [16, Section 6] this pullback is
expressed precisely as −1

4(δH∗ + 1
2 〈δI∗, II

∗
0〉) da∗. As points where the Epstein-Poincaré

maps are immersions are dense in Ω,Ω∗ and all forms discussed are continuous, the result
follows.

More explicitly, we can write the variation of VR in terms of the Beltrami coefficients.
We consider a C5,α family of Jordan curves (γt) as in the previous section and let Ft
be the corresponding homeomorphism of Ĉ which maps Ω0 conformally onto Ωt and a
diffeomorphism from Ω∗0 to Ω∗t . For z /∈ γ0, let

µt := ∂z̄Ft
∂zFt

= tν̇ +O(t2).

We have in particular, Ḟ := d
dtFt|t=0 satisfies

∂z̄Ḟ = ν̇, Ft(z) = z + tḞ (z) +O(t2).

Lemma 5.8. We have ‖ν̇‖∞ <∞. Moreover, ν̇|Ω∗ ∈ H−1,1(Ω∗) + N(Ω∗).
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Proof. On Ω we have that the 1-parameter family Ft is conformal, while in Ω∗ we can
write Ft as the composition gt ◦Ht ◦ g0, where Ht is a C3,α family of maps that agree
with h−1

t near ∂D. As gt, Ht, g0 extend to the boundary of their respective domains and
are C3,α as a family of maps, the L∞ bound of ν̇ follows from the compactness of the
domains.
For the second claim, as (γt) corresponds to a differentiable path in T0(1), the projection
of ν̇ onto harmonic Beltrami differentials Ω−1,1(Ω∗) parallel to N(Ω∗) lies in H−1,1(Ω∗).
This completes the proof.

Corollary 5.9. The first variation of the renormalized volume associated with the family
of deformed Jordan curves (γt := Ft(γ0)) is given by

δVR(γ) = −Re
∫

Ω∗
ν̇S [g−1]d2z. (5.8)

where we recall g : D∗ → Ω∗ is any conformal map.

Proof. As ν̇ ∈ L∞ and S [g−1] is continuous functions up to the boundary. The integrals
in (5.8) are absolutely convergent. We only need to check the pointwise identity(1

4δH
∗ + 1

8 〈δI
∗, II∗0〉

)
da∗ = ν̇S [g−1] d2z

on Ω∗. We have

dFt(z) = dz + t∂zḞ dz + t∂z̄Ḟ dz̄ +O(t2) = dz + t∂zḞ dz + tν̇ dz̄ +O(t2)

and in the dz, dz̄ coordinates

dFt(z)dFt(z) =
(

t¯̇ν 1
2(1 + 2tRe(∂zḞ ))

1
2(1 + 2tRe(∂zḞ )) tν̇

)
+O(t2).

Therefore, the hyperbolic metric in Ωt is

eϕ(1 + 2ts+O(t2)) dFt(z)dFt(z) = I∗ + teϕ
(

¯̇ν Re(∂zḞ ) + s

Re(∂zḞ ) + s ν̇

)
+O(t2).

where s is some smooth function on Ω and

I∗ = eϕdzdz̄ = 1
2

(
0 eϕ

eϕ 0

)
.

We obtain
δI∗ = eϕ

(
¯̇ν Re(∂zḞ ) + s

Re(∂zḞ ) + s ν̇

)
.

Recall that
II∗0 =

(
ϑ 0
0 ϑ̄

)
=
(

S (g−1) 0
0 S (g−1)

)
,

we have (using the complexified inner product 〈A,B〉 = Re Tr
[
(I∗)−1A(I∗)−1B

]
)

〈δI∗, II∗0〉 = 8e−ϕ Re(ν̇S [g−1]).

We obtain the claimed variation formula from Corollary 3.5 which shows H∗ = −K∗ ≡ 1
and which implies δH∗ ≡ 0.
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Corollary 5.10. We have for all C5,α Jordan curves γ, we have

S̃(γ) = 4VR(γ).

Proof. When γ is a circle, we have S̃(γ) = 0 and VR(γ) = 0 since both Epstein surfaces
are the geodesic plane bounded by γ. Given a smooth Jordan curve γ. The variational
formula Proposition 2.4 and Corollary 5.9 show that

S̃(γ) = 4VR(γ)

by taking a smooth deformation from γ to a circle.

5.3 Approximation of general WP curve

The goal of the section is to prove the following theorem.

Theorem 5.11. We have for all Weil-Petersson quasicircle γ,

S̃(γ) ≥ 4VR(γ).

We have already proved the equality when γ is C5,α. We also believe the equality holds
for arbitrary Weil-Petersson quasicircle but are only able to prove the inequality.
For the inequality, we will use the approximation using equipotentials. Let γ be a Weil-
Petersson quasicircle, f : D→ Ω be a conformal map as before. Up to post-composing f
by a Möbius map, we may assume that f(0) = 0, f ′(0) = 1 and f ′′(0) = 0. The family of
equipotentials

γn = fn(S1), where fn(z) := n

n− 1f
(
n− 1
n

z

)
is a family of analytic Jordan curves. The map fn satisfies the same normalization as f
at 0. We let Ω∗n := Ĉ r fn(D) (resp. Ω∗ := Ĉ r f(D)) and gn (resp. g) be an arbitrary
conformal map D∗ → Ω∗n (resp, D∗ → Ω∗). Apart from the analyticity, the family of
equipotentials is particularly nice because of the following theorem.

Theorem 5.12 (See [32, Cor. 1.5]). Along the family of equipotentials the universal
Liouville action converges and is non-decreasing. We have

lim
n→∞

↑ S̃(γn) = S̃(γ).

If γ is not a circle, then S̃(γn+1) > S̃(γn).

Lemma 5.13. We have ∫
ΣΩn∪ΣΩ∗n

Hda n→∞−−−→
∫

ΣΩ∪ΣΩ∗
Hda. (5.9)

Proof. It follows from [31, Cor.A.4., Cor.A.6] that the element [µn] in T0(1) associated
with γn converges to [µ] which is associated with γ. In particular, [31, Chap. I, Thm. 2.13,
Thm. 3.1] imply that∫

D
‖S (fn)‖2ρD d2z =

∫
D
|S (fn)|2ρ−1

D d2z
n→∞−−−→

∫
D
‖S (f)‖2ρD d2z.
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As T0(1) is a topological group, we have [µn]−1 converges to [µ]−1 which implies∫
D∗
‖S (gn)‖2ρD∗ d2z =

∫
D∗
|S (gn)|2ρ−1

D∗ d2z
n→∞−−−→

∫
D∗
‖S (g)‖2ρD∗ d2z.

Using (3.11) the proof is completed.

Lemma 5.14. Let V2,ε(γ) denote the signed volume between EpΩ and EpΩ∗ above the
level ε. We have V2,ε(γn) converges to V2,ε(γ) for all ε ∈ (0, 1).

Proof. For this, we denote for ε ∈ (0, 1),

Kε,n := {ζ ∈ D : ξn ◦ fn(ζ) ≥ ε}, Kε := {ζ ∈ D : ξ ◦ f(ζ) ≥ ε},

where (yn, ξn) is the Epstein-Poincaré map on the domain Ωn = fn(D). By (3.17), we
have for all n,

dist(fn(ζ), γn)
5 ≤ |ξn ◦ fn(ζ)| ≤ 4 dist(fn(ζ), γn)

which implies for all ζ ∈ Kε,n,

dist(fn(ζ), γn) ≥ ε/4.

It is not hard to see that fn converges uniformly to f on D from the explicit expression.
However, it holds more generally for any sequence of normalized conformal maps repre-
senting converging sequence in T0(1). In fact, we extend fn to a K-quasiconformal map
of Ĉ, where K is independent of n since a converging sequence in T0(1) is also bounded
in T (1). The family of K-quasiconformal maps, normalized as fn, is a normal family
and converges uniformly along subsequences on all compact sets of C. As the limit on D
is f , the convergence is thus along the whole sequence when restricted to D. Moreover,
the derivatives of fn converges to the derivatives of f uniformly on compact sets of D by
Cauchy’s integral formula.
Hence, there exists n0 such that for all n ≥ n0, we have

‖fn − f‖∞,D < ε/16.

This implies
dist(f(ζ), γ) ≥ ε/8 and ξ ◦ f(ζ) ≥ ε/40.

Summarizing, we have for all n ≥ n0,

Kε,n ⊂ Kε/40.

Since Kε/40 is a compact set in D independent of n, we have that all derivatives of fn
converge uniformly to the derivatives of f on Kε/40. As the Epstein-Poincaré map only
depends on f , f ′, and f ′′, EpΩn ◦fn converges uniformly to EpΩ ◦f uniformly on Kε/40.
Similarly argument applies to the Epstein-Poincaré maps EpΩ∗n ◦gn. We obtain that
V2,ε(γn) converges to V2,ε(γ).

We obtain the following corollary.
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Corollary 5.15. If γ is a Weil-Petersson curve, then

V (γ) ≤ 1
4

(
S̃(γ)− 1

2

∫
ΣΩ∪ΣΩ∗

Hda
)
<∞.

Proof. For small enough ε > 0,

V2,ε(γ) = lim
n→∞

V2,ε(γn) ≤ lim
n→∞

1
4

(
S̃(γn)− 1

2

∫
ΣΩn∪ΣΩ∗n

Hda
)

= 1
4

(
S̃(γ)− 1

2

∫
ΣΩ∪ΣΩ∗

Hda
)

by Theorem 5.12. We obtained the inequality by taking ε→ 0.

Theorem 5.11 follows immediately from this corollary.

6 Gradient flow of the universal Liouville action

Following Bridgeman-Brock-Bromberg [4] and Bridgeman-Bromberg-Vargas Pallete [5],
we introduce the following flow on T (1). For [µ] ∈ T (1) we have a natural isomorphism
T[µ]T (1) ' Ω−1,1(D∗). We therefore define the vector field

V[µ] := −4S (gµ)
ρD∗

∈ Ω−1,1(D∗).

Theorem 6.1. The vector field V has flowlines that exist for all time on T (1). The
flow restricts to a flow on T0(1) and is the (negative) Weil-Petersson gradient of the
Liouville functional S. Furthermore all flowlines on T0(1) limit to the origin [0] which
corresponds to the round circle.

Proof. By the Nehari bound we have that in the Teichmüller metric on T (1), ||V ||∞ ≤ 6.
Thus as T (1) is complete in the Teichmüller metric, the flow under V exists for all time
on T (1). If [µ] ∈ T0(1) then by the characterization (2.4) we have∫

D∗
|S (gµ)|2ρ−1

D∗ <∞.

Thus V[µ] ∈ H−1,1(D∗) ' T[µ]T0(1) and therefore by integrability the flow preserves T0(1).
Furthermore if ν̇ ∈ H−1,1(D∗) ' T[µ]T0(1) then by Theorem 2.1

(dS)[µ](ν̇) = 4 Re
∫
D∗
ν̇S (gµ) = −Re

∫
D∗
ν̇ V[µ] ρD∗ = −

〈
V[µ], ν̇

〉
WP

.

Therefore ∇WPS = −V and
dS(V ) = −||V ||2WP.

We consider the flowline R+ → T0(1) : t 7→ α(t) for V starting at a point [µ] = α(0) ∈
T0(1). Since S ≥ 0, for all T > 0,

0 ≤
∫ T

0
||V (α(t))||2 dt = S([µ])− S(α(T )) ≤ S([µ]).
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Thus ∫ ∞
0
||V (α(t))||2WP dt <∞.

We therefore have a sequence tn →∞ such that

lim
n→∞

||V (α(tn))||WP = 0.

By [31, Ch. I, Lem. 2.1], we have if φ ∈ A∞(D) then

||φ||∞ ≤
√

3
4π ||φ||2. (6.1)

Therefore
lim
n→∞

||V (α(tn))||∞ = 0.

Thus the conformal maps gα(tn) have Schwarzian S (gα(tn))→ 0. By normalcy, we obtain
a subsequence gα(tni ) converging uniformly on compact sets to a Möbius map preserving
−1, 1, i. Therefore limi→ α(tni) = [0], the origin of T0(1).
To show that the flow line converges to [0], we observe that [0] is the unique global
minimum for S on T0(1). Therefore there is a neighborhood of [0] ∈ T0(1) which is an
attractor. By the above, α enters this neighborhood and therefore it converges to [0].

Using the gradient flow we may bound the Weil-Petersson distance between [µ] and [0]
by the universal Liouville action. We first recall some results proved by Takhtajan and
Teo that we summarize in the lemma below.

Lemma 6.2 ( [31, Ch.I, Lem. 2.5, Rem. 2.4, Cor. 2.6]). There exists 0 < δ < 1 such that
for all µ ∈ Ω−1,1(D∗) with ‖µ‖∞ < δ,∣∣∣∣∣ |∂zwµ(z)|2

(1− |wµ(z)|2)2 −
1

(1− |z|2)2

∣∣∣∣∣ < 1
(1− |z|2)2 .

Moreover, for such µ, the map D0(β ◦ R[µ]) : H−1,1(D∗) → A2(D) is a bounded linear
isomorphism with

||D0(β ◦R[µ])(ν)||2 ≤ 24||ν||2 ||ν||2 ≤ K||D0(β ◦R[µ])(ν)||2

where K =
√

2/(1− δ)2.

Theorem 6.3. With the same constants δ and K as in Lemma 6.2. Let c < 2δ
√

4π/3
then for [µ] ∈ T0(1), we have

c(distWP([µ], [0])−Kc) ≤ S([µ]).

Proof. We let t 7→ α(t) be the gradient flow line starting at [µ] and τ be the first time
‖V (α(t))‖WP = c. Then ‖V (α(t))‖WP > c for all t < τ . Thus

S([µ])− S(α(τ)) =
∫ τ

0
‖V (α(t))‖2WP dt ≥ c

∫ τ

0
‖V (α(t))‖WP dt ≥ c distWP([µ], α(τ)).
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We have therefore

S([µ]) ≥ c(distWP([µ], [0])− distWP(α(τ), [0])).

As ‖V (α(τ)))‖WP = c then by (6.1), ‖V (α(τ)))‖∞ ≤
√

3/4πc < 2δ. Therefore

‖β̂([α(τ)])‖∞ = ‖S (gα(τ))‖∞ < δ/2

where β̂ is the Bers embedding T (1)→ A∞(D∗). As β̂(T0(1)) = β̂(T (1)) ∩ A2(D∗) the
linear path

γ(s) := [sµ̃], where µ̃ = − 2
z̄4

S (gα(τ))
ρD∗

(1
z̄

)
satisfies ‖µ̃‖D,∞ < δ

for s ∈ [0, 1] from 0 to α(τ) is in the ball of radius δ of T (1), and also in T0(1) since by
Ahlfors-Weill theorem

β̂([sµ̃]) = sS (gα(τ)) ∈ A2(D∗).

In the L2 metric on A2(D∗) this path has length ‖V (α(τ))‖WP ≤ c. By Lemma 6.2 we
have that the preimage of β̂ has therefore length less than Kc.
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