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Abstract

The universal Liouville action (also known as the Loewner energy) is a non-
negative Kéhler potential on the Weil-Petersson universal Teichmiiller space which
can be identified with the family of Weil-Petersson quasicircles via conformal welding.
This action is invariant under Mébius transformations, our main result shows that
it equals the renormalized volume of the non-compact subset of the hyperbolic
3-space bounded by the two Epstein-Poincaré surfaces associated with the quasicircle
in analogy to the theory for convex co-compact hyperbolic 3-manifolds. We also
study the gradient descent flow of the universal Liouville action with respect to the
Weil-Petersson metric and show that the flow always converges to the origin (the
circle). This provides a bound of the Weil-Petersson distance to the origin by the
universal Liouville action.
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1 Introduction

For a Jordan curve v C C, we let Q and Q* be the two connected component of C~ v,
pa and po- be the Poincaré (hyperbolic) metric (with constant Gauss curvature —1)
in 2 and Q* respectively. We consider C as the conformal boundary of the hyperbolic
3-space H3. In [10] C. Epstein gave a natural way to associate to each conformal metric
on C a surface in H®. We will recall the basics on Epstein surfaces in Section 3. Let
Epg, : Q — H? be the Epstein-Poincaré map, namely, the Epstein map associated with
the metric pg, similarly for Epg. : Q* — H?. The maps Epg, Epg: are smooth, extend
continuously to the identity map on v, and are immersions almost everywhere. We call
their images as the Epstein-Poincaré surfaces Y and Xqo«. In particular, we note that
the Epstein-Poincaré surfaces are non compact and have infinite area. We show the
following results.

Proposition 1.1 (See Proposition 4.1). If~ is not a circle, then the two Epstein-Poincaré
surfaces Yq and Yo+ are disjoint except at .

It follows directly from the definition of Epstein-Poincaré map that if v is a circle, then
both ¥ and X« are the totally geodesic plane bounded by « with opposite orientation
(see Example 3.1).

Proposition 1.2 (See Corollary 3.13). When v is asymptotically conformal (see Theo-
rem 3.10), there is a neighborhood of vy in Q0 on which the Epstein-Poincaré map Epgq is
an immersion and an embedding which fizes .

Quasicircles are in natural correspondence with points in the universal Teichmiller space
T(1), where we identify a quasicircle with its conformal welding homeomorphism. We
are interested in a special class of quasicircles, i.e. Weil-Petersson quasicircles, which
corresponds to the Weil-Petersson universal Teichmiiller space Tp(1). This space has been
studied extensively for it being the connected component of the unique homogeneous
Kahler metric on T'(1) (i.e. the Weil-Petersson metric) [31], and have a big number of
equivalent descriptions from very different perspectives, see, e.g., [2,7,12,27,34, 35].



Weil-Petersson quasicircles are asymptotically conformal, so Propositions 1.1 and 1.2
allow us to define the signed volume between Y. and Yqg+. A priori, this volume takes
value in (—oo, 00| (see Section 4.2 for more details). However, we show the following
result.

Theorem 1.3. If v is a Weil-Petersson quasicircle, then the signed volume between the
two Epstein-Poincaré surfaces, denoted as V(7), is finite.

See Proposition 4.5 for the proof for smooth Jordan curves. The result for general Weil-
Petersson quasicircles is obtained from an approximation argument, see Corollary 5.15.

Since Tp(1) has a remarkably unique homogeneous Kéhler structure, its Kéahler potential
is of critical importance. Takhtajan and Teo defined the universal Liouville action S on
To(1) and showed it to be such a Kéhler potential [31]. In this work, we will consider the
universal Liouville action as defined for Jordan curves (see Section 2.3), and denote it
as S for clarity. The functional S(v) can actually be defined for arbitrary Jordan curve,
but it is finite if and only if v is a Weil-Petersson quasicircle. Moreover, S is invariant
under Mébius transformations of C (i.e. under the PSLy(C) action). As the PSLy(C)
action extends to orientation preserving isometries of H?, it is very natural to search for
a characterization of the class of Weil-Petersson quasicircles and an expression of S in
terms of geometric quantities in H?.

A pioneering work of C. Bishop [2] shows that the class of Weil-Petersson quasicircles
can be characterized as Jordan curves bounding minimal surfaces in H? with finite total
curvature. We obtain the following similar characterization in terms of Epstein-Poincaré
surfaces. In fact, the Epstein maps come with a well-defined unit normal 7 pointing
away from Q and from Q* respectively. The mean curvature H := Tr(B)/2 is defined
using the shape operator B(v) := —V,1i.

Theorem 1.4 (See Corollary 3.9). We have for all Jordan curves,

21— ’Z|2)2 2
Hda = / | det B| da = / () ()P g2,
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where f: D — Q is any conformal map, .7 (f) = f"/f —(3/2)(f"/f)? is the Schwarzian
derivative of f, da is the area form induced from H3, and d?z is the Euclidean area form.

In particular, ¥q has finite total mean curvature (and finite total curvature) if and only
if v is a Weil-Petersson quasicircle.

However, no exact identity between the Kéhler potential and geometric quantity in H?
was known. The main result of this work is to provide such an identity.

Definition 1.5. Let v be a Weil-Petersson quasicircle. We define the renormalized
volume (or W-volume) associated with 7 as
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The definition is reminiscent to the renormalized volume® for quasi-Fuchsian manifolds
[16,30]. But we emphasize again that ¥ and ¥q+ are non compact so the analysis has
additional technicality.

Theorem 1.6 (See Corollary 5.10 and Theorem 5.11). If v is a C>* Jordan curve with
a >0, we have

S(v) = 4Vg(7). (1.1)

If v is a Weil-Petersson quasicircle, then we have S(7) > 4Vg(7).

Let us comment briefly on the proof of this theorem. It is easy to check that when ~ is a
circle, both sides of (1.1) are zero. We then show under regularity assumptions that the
first variation of both sides are equal. The variation of S was proved in [31], which we
recall in Theorem 2.1 (and improve in Proposition 2.4). The first variation of Vg is more
laborious since the Epstein-Poincaré surfaces are not compact and are immersed only
almost everywhere. After administrating appropriate truncation (where we make use of
the regularity assumption), we re-derive the Schléfli formula which expresses the variation
of Vg in terms of the mean curvature H, the metric I and the second fundamental form
I on Epstein surfaces (Theorem 5.1), then translate the variation formula into quantities
defined directly on Q,Q* c C (Theorem 5.7 and Corollary 5.9).

For a general Weil-Petersson quasicircle v we use an approximation by equipotentials
(they are analytic curves and the universal Liouville action increases to that of ). We
believe the identity (1.1) also holds for a general Weil-Petersson quasicircle. However,
our approximation argument only implies the inequality due to the lack of tightness for
the volume between the Epstein-Poincaré surfaces, see Section 5.3. We are tackling this.

The second topic of this work concerns the gradient descent flow of S with respect to the
Weil-Petersson metric. We proceed similarly as in Bridgeman-Brock-Bromberg [4]. For
[u] € T(1) we have a natural isomorphism Tj,;7(1) ~ Q~bH(D*).

Theorem 1.7 (See Theorem 6.1). The negative gradient of S with respect to the Weil-
Petersson metric is the vector field
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Moreover, the gradient descent flow of S starting from any point in Ty(1) converges to
the origin [0] which corresponds to the round circle.

Using the gradient flow, we also obtain bounds of the Weil-Petersson distance on Tp(1)
in terms of the universal Liouville action.

Theorem 1.8 (See Theorem 6.3). There exist universal positive constants ¢ and K such
that for all [p] € To(1), we have c(distwp ([, [0]) — Kc) < S([u]).

!'Renormalized volume of a convex co-compact hyperbolic 3-manifold is referred to the difference
between the volume and half of the boundary area defined through a foliation near the ends. Our formula
is similar to the definition of the W-volume. However, in the convex co-compact case, they only differ by
a multiple of Euler characteristics of the boundary [16, Lem. 4.5].



Finally, let us make a few remarks on the motivation behind this work and additional
comments on the relation with the literature.

S. Rohde and the last author introduced the Loewner energy for Jordan curves [24, 33]
which is originally motivated from the large deviation theory of random fractal curves
Schramm-Loewner evolutions (SLE) [33,36]. In a certain sense, the Loewner energy is
the action functional which characterizes the law of SLE. It turns out quite surprisingly
that the Loewner energy equals exactly S/m as proved in [34]. Since we will not make
use of Loewner theory but only the fact of S is a Kéhler potential on Tj(1), we adopt the
terminology of universal Liouville action here. SLEs play a central role in the emerging
field of two-dimensional random conformal geometry. In particular, they provide a
mathematical description of the interfaces in statistical mechanics models [17,26,28] and
also a new way of thinking about 2D conformal field theory (CFT) [1,8,13,20]. On the
other hand, H? is the Riemannian analog of AdS3 space. Our main result Theorem 1.6
can be interpreted as a holographic principle for the Loewner energy that is reminiscent
of the conjectural AdS3/CFT2 correspondence pioneered by Maldacena [18] (see also,
e.g., [19,37]). The authors are not aware of a (even conjectural) holographic principle for
SLE nor for random conformal geometry in general, this work may be a first step towards
this direction. We also mention [14] gives a holographic expression for determinants of
discrete Dirac operator on periodic bipartite isoradial graphs.

Renormalized volume as a Liouville action has been previously studied for convex co-
compact group actions in H? (see work by Takhtajan-Teo [30] and Krasnov-Schlenker [16]),
or equivalently, for conformally compact hyperbolic metrics. A set of applications of this
study are bounds for the hyperbolic volume of mapping tori of pseudo-Anosov maps
in term of their Weil-Petersson translation length (by Brock [6]) or their entropy (by
Kojima-McShane [15]). This uses a bound (by Schlenker [25]) for renormalized volume in
terms of Weil-Petersson distance by studying the gradient of the Liouville action, similar
to our bound in Theorem 6.3. Moreover, we show in Theorem 6.1 that every flowline of
the gradient converges to the absolute minimum, in analogy to the result done by the
first three authors [5] for the relatively acylindrical case. This builds on work by the first
two authors and Brock [4], where they used the gradient flow to find the minimum of
renormalized volume for a boundary incompressible hyperbolic 3-manifold.

The paper is organized as follows: In Section 2 we collect all the basics about universal
Teichmiiller space, its Kahler geometry, characterizations of the Weil-Petersson universal
Teichmiiller space, and the universal Liouville action. In Section 3 we recall the definition
of Epstein surfaces and the correspondence between geometric quantities on the surface
versus on the conformal boundary. We also prove the immersion and embeddedness of
the Epstein-Poincaré surfaces associated with an asymptotically conformal curve. In
Section 4 we study the relation between the two Epstein-Poincaré surfaces associated
with the same curve. We show that they are disjoint (except for a circle), and that
if the curve is regular enough, the volume between the Epstein surfaces is finite. In
Section 5, we prove the variational formula for the renormalized volume and prove the
main theorem Theorem 1.6. The last section 6 is independent from Sections 3, 4 and 5
and deals with the gradient flow of the universal Liouville action.
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2 Universal Weil-Petersson Teichmiiller space

2.1 Universal Teichmiiller space

We first briefly recall a few equivalent descriptions of the universal Teichmiiller space
T(1). Let C = CU{oc}, D ={z, |z| <1}, D* = C —D and S! = dD. The group of

orientation preserving conformal automorphism of C is

Méb(C) = PSLy(C) = {A = (a Z) ta,be,deC, ad —bc = 1}
¢ JA~—A
. - ey e . az + b . 1 -
which acts on C by Mébius transformations z +— ard The subgroup preserving S* is
Méb(S!) = PSU ; = {A = (O‘ B) o, BeC, laf’ - |8 = 1}
B a JAn—A

which is isomorphic to PSLy(R). There are a number of equivalent descriptions that we
will use.

Quasisymmetric maps: We write QS(S!) for the group of sense preserving quasisym-
metric homeomorphisms of S'. The universal Teichmiiller space is

T(1) := Mob(SYH\QS(S!) ~ {p € QS(S'), ¢ fixes —1, —i and 1}.
T'(1) is endowed with a group operation given by the composition and the origin is the

identity map Idg:.

Beltrami Differentials: Given a Beltrami differential
p€ LP(D*) = {pn € L=(D"), [|plle < 1},

we extend it to C by reflection, i.e. define for z € D,

pu(z) = M(l)i

z) z

Let wy, : C — C be the solution to the Beltrami equation dzw, = pud,w, fixing —1, —i
and 1. Then w, preserves S! and wylst € QS(S'). Since every quasisymmetric circle
homeomorphism can be extended to a quasiconformal self-map of D, we have

T(1) = Ly (D*)/~



where p ~ v if and only if wy| = wy|gi. We denote by & : L§°(D*) — T(1) the
projection p +— [p]. Here the origin corresponds to [0].

Univalent maps: If instead we extend p by 0 on D and let w* be the unique solution

to wt = pw! fixing —1,—i and 1, then w” is conformal on D. The map [u] — wh|p

identifies T'(1) with
{f:D— C, univalent fixing —1, —i and 1, extendable to q.c. map of (@}, (2.1)

since p ~ v if and only if w* = w” on D. The origin corresponds to Idp.

Quasicircles: By Riemann mapping theorem, the previous identification also gives
T(1) ~ {v quasicircle passing through — 1, —i, and 1} (2.2)

by the map [p] — v, := wh(S). The origin corresponds to Vo = S'. We can recover the
quasisymmetric circle homeomorphism from v, via conformal welding. Let  (resp. Q*)
denote the connected component of C~ v, where —1, —1i,1 are in the counterclockwise
direction of 9Q (resp. clockwise direction of 992*). Let f, = w|p: D — Q and
gu: D* — QF be the conformal maps fixing —1, —i, 1. Then,

wplst =g, " o fulst
since g, = w# ow;1|D*. We call g;l o fulst the welding homeomorphism of the quasicircle
Yu Passing through —1, —i, 1.
2.2 Kahler Structure and Weil-Petersson Teichmiiller space

We first define the following spaces,
Ao (D*) = {¢ : D* — C holomorphic, sup |¢|ppt < oo},
]D)*
Ay(D*) = {¢ : D* — C holomorphic, / 192 ppt %2 < 00} C Ao(D),
D*

where pp+(2) = 4/(1 — |2|?)? is the hyperbolic density function and d?z = dx A dy if
z = x +iy. The inclusion is shown in [31, Lem.I.2.1]. We define the similar spaces
A (D) and A3(D) (and also Ax(€2) and A2(€2)). We will also use the spaces of harmonic
Beltrami differentials defined as

QDY) = {v € L®°(D*), v = ppl b, ¢ € Axo(D*)};
H (DY) = {v € L®(D*), 0 = ppr ¢, ¢ € A3(D*)} € Q@ HH(D¥).

The universal Teichmiiller space T'(1) has a canonical complex structure such that
® : L°(D*) — T'(1) is a holomorphic surjection. The holomorphic tangent space at the
origin is

TiT(1) = L>®(D*)/ ker(Dy®) ~ Q™1 (D*)



where
ker(Dp®) = N(D*) := {v € L>=(D"): / v¢ = 0, V¢ holomorphic and/ |p|d?*z < oo}
D D*

is the space of infinitesimally trivial Beltrami differentials.
The space L*°(ID*) has a natural group structure given by the associated quasiconformal

maps. We define A = v+ p~ 1 if wy = w, o w;l. Thus

N et L
1 — v d,w, K

We define R, to be right multiplication by p on L*°(D*). This descends to give a
map R, : T(1) — T'(1). Furthermore, the complex structure on 7'(1) is right-invariant.

Therefore, DoRy,) : TioT'(1) — TjgT(1) is a complex linear isomorphism between
holomorphic tangent spaces, and we obtain the identification of TjyT(1) ~ Q=11 (D*).

To define a Kéhler metric on 7'(1), one needs to endow 7'(1) with a Hilbert manifold
structure. It is known since [3] that on the subspace .# = M&b(St)\ Diff(S!) there is a
unique Kéahler metric up to a scalar multiple. However, .# is not complete under the
Kéhler metric. Takhtajan and Teo extend the Hilbert manifold structure on 7'(1) by
defining the Hermitian metric on the distribution Z([u]) = DoRy, (H=Y(D*)) C T, T(1)
induced from H~1(D*):

(i, ) = / [iTppedz, Wi, € H- VDY),
ID)*

They prove that this distribution is integrable and define Tp(1) to be the connected
component containing [0] which is called the Weil-Petersson Teichmiiller space. The
Hermitian metric defined above is called the Weil-Petersson metric. (One may draw the
similarity with the Weil-Petersson metric on Teichmiiller spaces of a Fuchsian group I
where the integral is over D*/I".) In terms of the four equivalent definitions of 7'(1), the
subspace Tp(1) is characterized as follows:

e Quasisymmetric maps: Y. Shen [27] showed ¢ € Ty(1) if and only if ¢ is
absolutely continuous with respect to the arclength measure, and log ¢’ € H'/2(S!),
the fractional Sobolev space of functions u such that

[ullZy = //SIXS1 u(¢) — u(§)

(—¢
o Beltrami Differentials: It is shown in [31] that [u] € Tp(1) if and only if it has a
representative u € L$°(D*) such that

2
d¢dé < oo. (2.3)

[0 Pose ()% < oo.
s

o Univalent maps: It is shown in [31, Thm.II.1.12] (see also [7]) that a univalent
function f: D — ¢ fixing —1, —i,1 and extendable to a quasiconformal map of C,



corresponds to an element of T(1) via the identification (2.1) if and only if the

= (535
/D\f(f)\%usl d*z < oc. (2.4)

In other words, the Bers’ embedding ([u]) := .7 (f) € A2(D).

Furthermore, let f = Ao f where A is a Mobius map sending Q = f(D) to a
bounded domain (as a priori,  may contain co). Then f € Ty(1) if and only if

Schwarzian derivative

satisfies

LA (PP < o0 (25)

where A (f) = f"/f" is the pre-Schwarzian of f. We note that the expression in
(2.4) is invariant under the transformation f — Ao f o B, for all A € PSLy(C) and
B € PSU; 1 but the expression in (2.5) is not invariant under such transformations.

e Quasicircles: A quasicircle passing through —1, —i,1 which corresponds via (2.2)
to an element of Ty(1) is called a Weil-Petersson quasicircle. Tt is easy to see that
if v and 4 are two quasicircles passing through —1, —i,1 and 4 = A(«) for some
A € PSLy(C), then 4 is Weil-Petersson if and only if v is Weil-Petersson. Therefore,
we may extend the definition to say that a Jordan curve v is Weil-Petersson if and
only if it is PSLy(C)-equivalent to a Weil-Petersson quasicircle passing through
—1,—i, 1.

2.3 Universal Liouville action

Takhtajan and Teo introduced the universal Liouville action S on Ty(1) and showed it to
be a Kéhler potential on Ty(1). See [31, Thm.II.4.1]. We will consider it as a functional
on the space of Weil-Petersson quasicircles.

Indeed, let v be a Jordan curve which does not pass through co. Let D and D* be
respectively the bounded and unbounded connected component of C~ v, f: D — D and
g : D* — D* be any conformal maps such that g(co) = oo (note that D might not be €,
it can also be %, and f and g are different from the canonical maps f, and g,). Define

S 1= [V + [ |4 (@) d% +anlog|f(0)/g ()| (20)

and is PSLy(C)-invariant (it can be seen via the identity with 7 times the Loewner
energy of v [34]) and finite if and only if v is a Weil-Petersson quasicircle. The universal
Liouville action S([u]) for [u] € Tp(1) is defined as S(A(v,)) where v, is the Weil-
Petersson quasicircle passing through —1, —i, 1 corresponding to [u] and A € PSLy(C) is
any Mobius transformation such that A(v,) is bounded. The universal Liouville action
S satisfies the following properties:

o S([p]) >0 for all [u] € To(1) (see, e.g., [34, Thm. 1.4]);



« S(v) = 0 if and only if 7 is a circle, or equivalently, [1] = [0].

The first variation formula of S from [31] will be a key ingredient in our proofs. We
now state it for S. Let ~v be the Weil-Petersson quasicircle passing through —1, —i,1
corresponding to an element [u] of To(1). Let Q and Q* be the connected components
of C ~ 7 as in Section 2.1. Let fu:D— Qand g, : D" = QF be the conformal maps
fixing —1, —i, 1. Let v € H~(D*) = Ty, To(1), t € (— o[l 7)), we - € — C be the
solution fixing —1, —i,1 to the Beltrami equation

Dewy(z) = 0 z €0,
= Hga)e 2(2) Down(z) = € QF

where

1 (9 1)'_
gi')
We let vy, = wi(y) which is a small deformation of ~.

(9u)ev(2) =vog,

~~

Theorem 2.1 ([31, Cor.I1.3.9]). The universal Liouville action satisfies the following
first variation formula. Let v € H- Y1 (D*) ~ Tp, Ty (1),

d

(dS)y (¥) = T

| 80w = 4Re/ 5. (gu)d%e = —4Re/ ((gu)+7) (g7 d2z.
t=0 D* Qr

Remark 2.2. We note that compared to the formula in [31], we take the derivative of
S in the real tangent space (which is canonically isomorphic to the holomorphic tangent
space) while [31] takes derivative in the holomorphic tangent space and both derivatives
are related by

(d8);(#) = 2Re 3, S([1])-

The last equality in Theorem 2.1 follows from a change of variable and the chain rule for
Schwarzian derivatives which shows

Lg ) =-F(g9)og  (g")

Remark 2.3. We choose i to be harmonic Beltrami differential as H~1(D*) is iso-
morphic to T}, To(1), in particular, supplementary to the infinitesimally trivial Beltrami
differentials M(D*). Clearly, the variational formula also holds for 7 € H—%1(D*) +9(D*)
if [].#(g)|d%z < oo, which is the case, e.g., whenever the curve 7 is smooth.

Combining Theorem 2.1 and Remark 2.3 we obtain the following slightly modified version
of the variational formula for S. (We will not need the two-sided deformation, but it is
more natural when considering the Liouville action as defined for quasicircles and there is
almost no cost to add this.) We write 91(Q) (resp. D(Q2*)) for the space of infinitesimally
trivial Beltrami differentials on €2 (resp. *).

Proposition 2.4. Let v C C be a smooth Jordan curve. Let ) and Q* be the connected
components of C~~. Let f : D — Q and g : D* — Q* be any conformal maps. Let

10



i € H-MHQ) + NQ) and 7o € H Q) + N(Q*) and w; be any solution to the
Beltrami equation

0wy

Ozwy  Jtn, z€Q,
trg, z € QF.

Then we have

d
i

S(wi(7)) = —4Re (/Q P (f )2z + pﬂ(gl)d%).

Q*
The normalization of v, wy, f and g are not needed as the formula is invariant under

other choices.

Proof. We only need to justify how the variation formula for one-sided quasiconformal
deformation implies the two-sided deformation.

We consider first the two-variable family of quasiconformal maps ws; whose Beltrami
coefficients are srq in  and tin in QF for t,s € R small enough. We have by the
composition rule of quasiconformal maps

_ ot
Wst = Ug O W0t

where

dzwoy )0, z€Q, dzul, s(wot)«1, 2 € wor(€2),
8;;'11]()715 tl)?v S Q*a azug 07 z € ’U)O’t(Q*).

From the one-sided variation we get

il St = —4Re [ in(o) 7671
and
2l Stwss) = ~ae [ w01 (2) 2 ou ()%

— _4Re / 1(2) #(f)(2)d%= + 4Re / n(2) L(wog) ()22 (2.7)
Q Q

Lemma 1.2.9 in [31] shows that there exists C' such that

% 2 1/2 ‘ . 1/2
1 (o )2 = ( / Wd) < ClIPG)12 = Cltl ([ 1PG2)Ppac’=)

where P : H=11(Q) + MN(Q) — H-51(Q) is the projection parallel to 9(£2). The second
term in (2.7) converges to 0 as t — 0 by Cauchy-Schwarz inequality. Therefore we can
apply the chain rule and get

d ~ d -

a _4ad _ 4 , 1y 42 - 1y 42 )

dt\tzos(wt(v)) dt\t:OS(wt,t(w Re (/Quly(f )Pzt | i (g7h)a%
as claimed. O

11



3 Epstein-Poincaré surfaces

3.1 Epstein hypersurfaces associated with conformal metrics

In [11] Epstein developed a formula for envelopes of horosphere in terms of conformal
metrics in S = O, H" 1. Here, the hyperbolic space H"*! is represented as the interior
of the unit ball B"*! with the metric:

4(dad + - +da? )
1 =lzP?? 7

and S" is represented by the unit sphere in R"*!. Let ps: denote the metric on S

ds® =

induced by the Euclidean metric, namely, the round metric.

Given a domain 2 C S” and a smooth function ¢ : @ — R, we can associated the
conformal metric p := e®pgn to the parametrized surface
[Dgl*(e** =1) 2Dy

z
[Del*(e? +1)27 | Depf?(e# +1)?

Ep,:z€Q— e Bt = gt (3.1)

where D denotes the gradient with respect to psn. As proved in [11, Section 2], the map

Ep,, solves the envelop equation of the family of horospheres {H(z, ¢)}.cq, where

e?(2)

e‘P(Z) + 1 e%"(z) +1

H(z,¢) = { ’Y e s~ {z}} (3.2)
is a horosphere centered at z and determined by the value of ¢(z). Solving the envelop
equation means for all z € §,

Ep,(z) € H(z,p) and D.Ep,(T.S") C TEpp(z)H(z, ©). (3.3)

We can expand the Epstein map Ep, to the Epstein Gauss map ﬁf)p :Q — TH
by defining Epp( z) as the outer normal vector to H(z, ) at Ep,(z). The geodesic flow
in the direction —Epp( z) converges to z. We have that Epp is always an embedding.
In contrast, even though we have called Ep a parametrized surface, the map Ep, need
not to be an immersion. For instance, ¢ = 0 implies that for any z € S we have that
Ep,(z) = 0 while ]:]T)p(z) = (0, —z). Regardless, we will see in Section 5 that because we
can parametrize the normal bundle by Ef)p we will be able to treat the Epstein surface
as a parametrized surface.

Geometrically, we can use visual metrics to describe H(z,¢). Given z € H""!, we define
the visual metric of x, denoted by v,, as the metric in S = 9, H"*! defined by the
pullback h*(psn), where h is any isometry of H"! so that h(z) = 0. The metric v, is
well-defined, as the stabilizer of 0 in Isom (H"*!) acts by isometries in S™. Moreover, as
Isom y (H**1) acts conformally in S”, the metric v, is conformal to ps», meaning that
we can write v, = e?pgn for some smooth function ¢ : S* — R that depends only on x.
Then it is a simple exercise to verify that H(z, ) coincides with the locus

{z e H"™ | 1y(2) = e#®pgn}, (3.4)

12



and the inside of H(z, ¢) is the locus
{z e H" | 1y(2) > e pga}. (3.5)

By definition, it is easy to verify that if z € H"" h € Isomy(H""!) we have that
h*(vn(z)) = vz. Hence it follows

Ep, = hoEpy, (3.6)

where h*p is the pull-back metric of p under h.

3.2 Explicit expression of Epstein maps in the upper-space model

Here and in the sequel, we restrict ourselves to the case n = 3. For the computation
purpose, it is convenient to use the upper-space model of the hyperbolic 3-space. Namely,

H® = {(5,€) € C x R>o}
with the hyperbolic metric
o |dy|* +de?
= a

The results presented in this section were obtained in [16] and [11]. We collect them here

ds

for the readers’ convenience, also because our choice of convention of Epstein map, which
coincides with the horosphere envelop interpretation of the Epstein map as described in
Section 3.1, is slightly different than [16]. The difference of convention results mainly
in constant factors at various places. We choose to include the simple derivations or
examples to verify the constant factors.

Let e¥|dz|? be a smooth conformal metric on an open set U C C. The Epstein map
Ep, := Epeejaz2 1 2 €U = (y,§) € Cx Ry = H? is given explicitly by

2e~¢/? 2pze~ ¥

:77 :z—i—i
ke VT T e

=z+&- Y, (3.7)
where
b= ze 2 gz =080

The Epstein Gauss map is E\f)cp: U c C — T1H? such that the base point is Ep, and the
vector component is £ 7 where

7:( 2pze /2 1—|s0z\26‘“">:< 2y 1_’¢2> (3.8)

1+ |pzlPe=?" 1 4 |pze™v L+ 9" 1+ [of

is a FEuclidean normal vector. It is straightforward to check that the geodesic flow
a(t) € TyH? starting from —Ep,,(2) = (Ep,(z), —7) satisfies

aft) = —Ef)¢+2t(z)a

and the base point of «(t) tends to z as t — oo.
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Example 3.1. o If p = 2t, then for all z,
Ep,(2) = (2,2¢”") 7 =(0,1).

o Ife¥ then for all z € C, (y,&) = (0,1).

_ 4
4P
o If o = log4 — 2log(1 — |2]?), i.e., €?|dz|? is the hyperbolic metric in D, then for

z:reiee]D,
. o . 1—12
o\ __ 0 _
Epy (re”) = <1—|—7“2€l ’ 1—1—7‘2) = .

We see (and one of the advantage of choosing this convention is) that Ep, maps D
onto the totally geodesic plane in H? bounded by OD.

Fix ¢ € C®°(U,R). Let X; denote the Epstein surface associated with the metric
e?2|dz|?, ¥ = Xg. Let I and I; denote the first fundamental form on ¥ and on %;. Let
B(v) := —V,ii be the shape operator on ¥, wherever Ep, is an immersion. We let

I(u,v) :=I(Bu,v) = I(u, Bv), M (u,v) := I(Bu, Bv)

and k_, k; be the two eigenvalues of B, namely the principal curvatures on . Let

1 k_+ kg
H:=—-tr(B) = ——
2tr( ) 5

be the mean curvature on X.

Definition 3.2. We define the first, second, and third fundamental forms at infinity
associated with the surface ¥ as

"= [+ 20 + I = [((id +B)-, (id + B)-);

I* := 1 — I = I((id + B)-, (id — B)");

id—B

id+B’

I* .= I*(B*, B*) = [((id —=B)-, (id —B)) = I — 2I + I

B* = (I*)—l]I* —_

where id is the identity operator. We define similarly H* = tr(B*)/2.

Theorem 3.3 (See [16, Lem. 5.7, Thm. 5.8, Cor.5.11]). We have

1
I = Z(62'51* + 2I* + e 2MM*).

In particular,

_ t
de~ 2y, 1220 1,

Moreover, we have
I* = e?|dz|?, I* = 9dz? + 0dz? + 2¢.5 dzdz,

where 9 = ¢,, — %(gpz)z. The eigenvalues of B* are given by

kL = L=ke _ gee (cng + \/1915) = —K* £ 2e ¢V
14kt
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In the last equality we used the identity

1 1.,
Pz = ZAQO = fge@K (3'9)

where K* denotes the Gauss curvature of the metric I*.
Example 3.4. When ¢ = 0, we have I;(y,£) = ¢ 72|dy|? = (e /4)|dy|>.

Corollary 3.5. Let da denote the area form induced by I, da* = e¥ d?z the area form
induced by I, we have da* = (1 + k4 )(1 + k_)da,

1—(K* 2
Hda = (H + \79]26_2“"> da”,

4
k* + k*
H* = ky TR — _K*.
2
and )
1— k) (1 -k 14 K*
kyk_da = ( ) _)da* = % — e—zwym?] da*.

Proof. Tt follows directly from Definition 3.2 that

1k
1+ kL

ky and da* = (1+ky)(1+ k) da.

We obtain from Theorem 3.3 and (3.9) that

ky +k_ 1
Hda = da* = ~(1 — ki k* )e? d?
S AT R ) G T (LT kD )erd
1
= (01— 4e72 (g2, — 9)eP 2
1 1
= 1(1 — 467290((5690}(*)2 — [9%))ed?z
1— (K* 2
= <( ) + \19|26_2“’> da*.
4
Similarly,
k% + KX
H* = % =2 Pp,; = —K*
and
kyk_ (1-Fk)(1—k%)
kik_da = da* = da*
L SRR TE I 4 ¢
1 _ =
= Z(1 + K* —2e?VI9)(1 + K* +2e?VI9)da*
*)2
— (1+K) _67250‘19’2 da*
4
as claimed. O
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3.3 Epstein-Poincaré map on a simply connected domain

We apply the results to the special case of Epstein-Poincaré surfaces, namely, the
Epstein surfaces associated with the Poincaré (or hyperbolic, namely, K* = —1) metric
paldz|? = €¥|dz|? on a simply connected domain  C C. Let f : D — Q be a conformal
map. Then using the same notation as Theorem 3.3, we have

9=, ki=1x2|7( Y

where

L7 (f DI = 1 (FHle ™

Remark 3.6. The fact that ¥ equals the Schwarzian derivative of a uniformization map
follows from a direct computation, this holds true if and only if the metric on €2 has
constant curvature. Moreover, from the Nehari bound, we have

I.2(f ()| <3/2, Vzeq.

From the computation above and Corollary 3.5 we obtain the following result.

Theorem 3.7 (Epstein-Poincaré surface [11, Prop. 7.4]). If ||.#(f~1)(2)|| # 1, then Epq
is an immersion near z and the principal curvatures of ¥q at Epg(z) are given by

—7 (I
ke =—0 ——"—. (3.10)
(DI +1
In particular, we have
Hda = [9?e™%2da* = ||.7(f 1) ||Ppa d?2. (3.11)

We have the total curvature
/ | det B| da := / Ik |da = / 2% |92da* = / 17 (D) 2paldz|? = / Hda.
 q Tq Q Q p3e}
We note that fEQ is understood as the integral on the non-singular locus

{Epa(2): [ (f ()l # 1}
which has full measure.

Example 3.8. If Q =D, (3.10) shows kr = 0 which is consistent with the fact that X
is a totally geodesic plane. See Example 3.1.

We obtain immediately the following consequence which is reminiscent to the results of
Bishop obtained in [2].

Corollary 3.9. A Jordan curve vy is a Weil-Petersson quasicircle if and only if

0< Hda:/ | det B|da < oo.
I So
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Proof. This follows from the characterization (2.4) of Weil-Petersson quasicircle, the
identity

LI = [ 1777 Epad?=,
and Theorem 3.7. O

The Epstein surface is uniquely determined and naturally associated with a simply
connected domain 2. There are two connected components of v in @, we will study
the relation between the two Epstein-Poincaré surfaces later in Section 4 and it will be
crucial to define the renormalized volume. However, let us first record some properties
of a single Epstein-Poincaré surface. We will use a few classical results from geometric
function theory.

Theorem 3.10. Let f be a conformal map from D onto a domain bounded by a Jordan
curve .

o See [22, Prop. 1.2]. For all ( € D, we have

1=1P) Q) =
R (3.12)
o See [22, Cor. 1.4]. For all ¢ € D, we have
1 — [P £ (Q)] < dist(£(¢), ) < (1 =[S ()] (3.13)

e See [22, Thm.11.1]. The following are equivalent:

(AC1) ~ is asymptotically conformal'

(AC2) limyg - L8 (1 - |¢?) =
(AC3) Timy¢ 1 || (/)] = 0;

70 - fa)
(A D7)

Example 3.11. Weil-Petersson quasicircles are asymptotically conformal. See, e.g.,
Corollary I1.1.4 of [31].

|2 — |
1—|z]

—las¢ =z, €D and <a (for all a > 0).

Lemma 3.12. The Epstein-Poincaré map Epq : @ — Xq has the following explicit
expression. For z = f((), ¢ € D, we have

) = perl2 _ O] (_f"<<>(1—|<;y2) )
P(z) = ¢z ) 70 5 +¢,
D2 = 217010 - 1¢P)

£(z) = 207 F(O1 —1¢?)
TR T 1o - DO g

710 (- <|>+g) ( )(1=1¢1%)

G

1+ |- f’(C 2 +d
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Furthermore, it extends continuously to 0D, namely, (y,&) —— (f(¢'9),0). In particu-

¢—ett
lar, Epq extends continuously to v as the identity map.
Proof. We express pq as
4|dz|?
pa = e?3|dz)? = [dz] . (3.14)

P RIPA -1 R)P)?

In ¢ variable,

o) — (If’(C)I(; - ICQ)>27 (3.15)

it gives
p(f(C)) = log4 —log | f'(¢)]* — 2log(1 — [¢[*).
Taking derivative in ( we obtain

NGRS
O T

szf/(C) =

hence
Q) 2
TR T o0 -1

Combining with equation (3.15) we get

= oeer2 _ Q) (_f"<<> 1-1¢? )
Y(z) = pze™? G 7o 2 +¢]. (3.16)

The expression for £ and y follows from their definition (3.7). We note that (3.12) implies
that [1)| < 2 and (3.13) implies that e #(*)/2 — 0 as ¢ — €. We obtain the limit

(y(2),€(2)) pary (f(?),0). B

if

Lemma 3.12 and condition (AC2) show that when v is asymptotically conformal, we
have as ( — 0D,

e e SOOI Q)
ye f(O) = f(Q) 2 _’Cf,(O|d t(f(€),7);
/ _ 2
o (0~ LI i) )

Where “~” means the ratio goes to 1 and “~” means the ratio is bounded from above
and below. And for all ¢ € D, Lemma 3.12, inequalities (3.12), and (3.13) show that

dist(£(0),7) _ 1(QI0 = [¢)
5 - )

< (€0 (O < 1A (I = [¢) < 4dist(f(C),7)- (3.17)

Corollary 3.13. If Q is bounded by an asymptotically conformal curve v, Epgof is an
immersion and embedding in a neighborhood of OD.
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Proof. Since = is asymptotically conformal, Theorem 3.7 and (AC3) imply that Epg of
is an immersion in a neighborhood of 9.

Now we also show that Epg of is also an embedding near the boundary. The inequalities
in (3.13) show that there exists dp > 0 such that if 1 — || < Jp then

3 st (£(0),) < Q) — F(Q)], £(C) < 3list(7(C),) (3.18)

and the principal curvatures Ay of ¥ at Epg of({) are bounded by 1/2. Let As := {( €
D: 1 —|¢| < d}. We now show that Epq of|4, is an embedding for small enough 4.
If it is not the case, then from (3.17) the self-intersection must occur to points with

comparable distance to . In other words, we have for every § < ¢y, there is (4 =
(1(9), (2 = (2(9) € Aj such that y(¢1) = y(¢2) and £(¢1) = £(¢2). Then we know from
(3.18) that |(1 — (2] — 0 as & — 0. Let ns be a geodesic loop from (y(¢1),£(¢1)) to
(y(¢2),&(¢2)) on the Epstein surface, and for small ¢, it is contained in the image of
Epq of|A50. The proof of [11, Thm. 3.4] or [9, Prop. 4.15] then shows that it is not possible
since the principal curvatures on Epg of|a, have modulus less than 1/2. O

4 Renormalized volume for a Jordan curve

4.1 Disjoint Epstein-Poincaré surfaces

When 7 is a circle, Example 3.1 shows that both Epstein surfaces coincide with the
geodesic plane bounded by ~.

Proposition 4.1. If v is not a circle, then %q and Yq» are disjoint in the interior.

Proof. We will use the horosphere envelop description of the Epstein surfaces described
in Section 3.1. It suffices to show that for all n € Q and 7’ € Q*, the horospheres at 7
and 7 for the respective hyperbolic metric are disjoint.

By the invariance property (3.6) of Epstein map under Mébius transformation, we may
assume that 7 is the south pole s = (0,0, —1) and 7 is the north pole n = (0,0,1).
Moreover, writing the Poincaré metrics pg = e¥pg2 and po- = e¥ps2, we may also
assume that ¢ (n) = 0 after possibly applying another Mébius transformation fixing n
and s. Hence, the horospheres H(n, 1) = H(n,0) passes through the origin (0,0,0) and
is contained in the upper half-ball of B3.

Let 7 : S? \ {n} — C be the stereographic projection from n sending s to 0 € C and the
lower half-sphere S? onto D. The condition 1 (n) = 0 is equivalent to |lim, .., ¢'(2)| = 1
where g is a conformal map from D* = 7(S%) to 7(€2*) fixing occ.

On the other hand, we have
4 2 4 2
Tepsz = a4z, meps2 g = 5glda]
(1+2%)? -0 (A= zP)?
where z = 7(0), and these expressions coincide when z = 7(s) = 0 which shows
Ps?2s = Ps2? s
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Now let f be a conformal map from D onto 7(£2) fixing 0. We have

Tepszs = Tapsz o = pp0 = |/ (0)Ppr()0 = |/ (0)*7epass,
where the second and the last equalities follow from the definition of push-forward, and

the third equality follows from the property of the hyperbolic metric.

The following Lemma 4.2 shows that |f'(0)| < 1. Therefore, po s > ps2 s and (3.4) and
(3.5) show that H(s, o) is strictly contained in the inside of H (s, 0). In particular, H(s, )
is strictly contained in the lower half-ball and is disjoint from H (n, ). O

The following lemma is a special case of the Grunsky inequality, see, e.g., [21, Thm. 4.1,

(21)] and [31, P.70-71].

Lemma 4.2 (Grunsky inequality). Suppose that f : D — C and g : D* — C are univalent
functions on D and D* such that f(0) =0 and g(oco) = oo, and f(D) N g(D*) = 0. Then

we have /(o0)
/Df(Z) z 9(z) = ; ’

f'(0)
Equality holds if C~ {f(D) U g(D*)} has zero Lebesgue measure.

/ 2 ’ 2
f (Z) 1 d22+ g (Z) 1 sz S 27T10g

]D)*

4.2 Volume between the Epstein-Poincaré surfaces

Let v C C be an asymptotically conformal Jordan curve. We now define the volume
between Y and Yo+. We cautiously note that both Epstein-Poincaré surfaces are non-
compact and may not be embedded. Without loss of generality, we assume that v does
not contain oo € C and use the upper space model of H3. We consider an approximation
of the hyperbolic volume form. For € > 0, let

voleyer

{3

volg = 1¢>.

where volg, is the Euclidean volume form.

Let ¢, be continuous map H3 — H3, such that oo = Epq, ¢yl = Epg-, and ¢, |ys is
differentiable. This is possible since Epg and Epg« extend to the identity map on v. We

define
Va(v)(e) = / o vol..
H3

This is the signed volume between the Epstein surfaces bounded by ~ above level €.
Since the boundary values of ¢, are determined and ¢., (H3) N {(y,&): £ > €} is compact,
we have V5(7y)(¢) is finite and independent from the choice of ¢,. Since both Epstein
surfaces are disjoint (unless « is a circle) by Proposition 4.1 and embedded near the
boundary by Corollary 3.13, without loss of generality, we assume further more that the
Jacobian of ¢, is positive in a neighborhood U, of 7 in H3. (If v is a circle, then we
choose ¢, such that the Jacobian is zero.) Now we define

lim Va(3)(e) € (—00,oc]. (4.1)
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Notice that [;; ¢ vol: increases as & — 0+ and [y ;. ¢ vole is constant for small
enough €. Therefore the above limit exists, and the monotonicity and (3.6) also show
that the limit is invariant under actions of elements in PSLy(C) which do not send any
point of v to oo € C.

Definition 4.3. For an asymptotically conformal Jordan curve v C C, we define the
signed volume between the Epstein-Poincaré surfaces V() to be the limit in (4.1) applied
to the curve A(y), where A is any element in PSLy(C) such that A() does not passes
through oo.

The above definition is clearly PSLy(C)-invariant.

4.3 Volume for smooth Jordan curves

In this subsection we will see if the Jordan curve « is sufficiently smooth, then the map
Epg extends not only continuously to v but also osculates to the totally geodesic plane
bounded by the circle osculating to the curve. This will be useful later to prove that the
volume between Epg and Epg- is finite, if 7 is sufficiently smooth.

For a C? curve y(t) = z(t) +iy(t) in C, curvature is calculated by

x’y” _ y’:z:”

1 0
b0 = s e ~ e e )

If v is C%“ for some 0 < a < 1, Kellogg’s theorem implies that the conformal map
f:D — Q extends to a C*>* homeomorphism D — . Writing () = f(e'?) we have
that

+(0) = if' ()"
7//(9) — _f//(elé) . f/(ele)ele'
Then it follows that

—Re (/") FI(e)e? + |f'(e9)2)

kv(V(‘g)) = |f’(ei9)]3
— Re(ifc/,/((::;)) ey —1
a |f'(e?)]

Define then the osculating circle, denoted by €,,(0), as the circle with center v(6) + l,l:ggg

and radius |%|, oriented the same as . The circle €, (6) is then tangent to v at y(6),
and agrees with + at this point of tangency up to second order. From this, it follows
that €, (0) is invariant by parametrizations of .

Similarly, we can define the osculating plane, denoted by 22 (6), as the geodesic plane in
H3 so that the boundary of £, (0) is ¢,(6). Hence we will show that for ~ sufficiently
smooth we have that Epg and 22, (6) agree up to second order.

For this, a straightforward computation using the explicit expression of the Epstein-
Poincaré map (Lemma 3.12) gives the following.
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Lemma 4.4. Assume that v is C*>*. Using the parametrization (r,0) — f(rel) of the
domain Q, near ¢ = f(¢'9) € v, we have

Jtn ()  lim ( 2 1- W) _ <|f'<ef9>|€w,0> .

7 e \ 14 927 14 [¢]? f'(e%)

"(eify
0,1 (q) = (0, —Re(‘;/((ew))eﬁ) _ 1> ;

697@) _ (ieief/(eié)) (Re(f//(eie)ew) N 1) ’0> ‘

/()] f'(e?)

In particular, this implies that the Epstein-Poincaré surface, viewed as a surface embedded

in R3 near vy, is umbilic with curvature —(Re(?,/((:il:)) ey + )| ()|t = k,(q) at g.

Proposition 4.5. Let v be a C** Jordan curve in C. Then Epg, and Z(0) are tangent
at (v(0),0) and agree up to order 2.

Proof. Since 7 is C*® then f : D — C extended to 9D as a C*® map. Then the Epstein
map extends by identity on ~ is a C>® map on D by Lemma 3.12. We see then from
Lemma 4.4 that the continuous extension of 7 is the Euclidean unit outward orthogonal
vector to . Hence the extension of the Epstein map at v has to agree up to first order
with the osculating plane &;. To verify that they actually agree up to second order,
Lemma 4.4 shows that the Epstein-Poincaré surface is umbilic with the same curvature
in the Euclidean space as Z,. ]

Next we show that for sufficiently regular curves « this volume is in fact finite.

Proposition 4.6. Let v be a C>% Jordan curve in C. Then V() is finite.

Proof. Without loss of generality, we assume that v : S! — C is parametrized by arc-
length. Take ¢, some continuous map H3 — H3 as before, meaning that ©v~|a = Epq,
¢y|a+ = Epge«, and ¢, |ys is differentiable. We take the following C+“ parametrization
of a neighbourhood U of ~ in H3, denoted G : Sl x @(&b) — H3, by

G(s,a,b) = 7(s) +1ay'(s) + bes

where e3 = (0,0, 1). It is a straightforward calculation to see that the hyperbolic metric
in G-coordinates is given by

1— 2 1 1
7( ak(s)) ds? + —da® + =

2
b2 b2 b2 av’,

where k(s) is the signed curvature of v given by 7”(s) = ik(s)7/(s). Hence the volume

form is given by
(1 — ak(s))

73 dsdadb.
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If we assume that v is C>®, then the Epstein-Poincaré surfaces are C** up to the
boundary. This means that there are C% functions aq, ag~ : S! x [0,£0]y — R so that
the Epstein-Poincaré surfaces in the neighbourhood U of « are given by G(s, aq(s,b),b),
G(s,aq+(s,b),b). And since by Proposition 4.5 the Epstein-Poincaré surfaces agree up to
second order at -, then there exists a constant C' > 0 so that |aq(s,b) — aq+(s,b)| < Ob>.

Hence for small enough neighborhood U of v, the integral [;; ¢3 vol will be bounded by

)(0) /31/ /am 1_ak())dadbds.

This integral is well-defined and convergent since

ao(s,b) + ao«(s,b)

bl a0 (5, b)—aQSbH( g )k(s)—l‘

/aﬂ* (s:0) (1 — ak(s))da

Q(S’b) b3

is bounded by a constant independent of (s,b). Hence V(vy) = lim._,04 Va(7)(€) is a
finite real value. O

Definition 4.7. Let v be a Weil-Petersson quasicircle in C. Then we define Vi(y), the
renormalized volume of ~, as

1
Ve(y) =V(y) - */ Hda
YoUXgx

1 _
— 5 [I2G D@ P - 5 [ 17670

Remark 4.8. The second identity follows from Theorem 3.7. A priori, Vz(7y) € (—o0, o0

(4.2)

as V(y) € (—o0,00] and the integrals of mean curvature are finite by Corollary 3.9.
Proposition 4.6 shows that if v is C%, then Vz(y) < co. From the PSLy(C)-invariance
of each summand in ((4.2)) we can easily see that Vg is PSLy(C)-invariant.

5 Universal Liouville action as renormalized volume

Our objective in this Section is to prove that the renormalized volume in Definition 4.7
agrees up to a constant with the Loewner energy for C>% curves.

5.1 Variation of the volume

For this subsection we consider a 1-parameter family (’Yt)te(—l,l) of C>% Jordan curves
( > 0). We will define a parametrization of the Epstein surfaces that allows us to
compute the derivative %\tZOV(%). Since scalar multiplications are isometries of H?,
we can assume without loss of generality that all curves -+, have Euclidean arclength
27r. Furthermore, for any sufficiently small € we have that V(v) = Vi(y:)(€) + Va(ye) (e).
Moreover, we assume that Va(7;)(e) N V() converges uniformly in ¢.

Let f; : D — 4, g+ : D* — QF be univalent functions. As the 1-parameter family ~;
is C>*, we can take the l-parameter family of maps f;,g; to be C>® on D and D*
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Figure 1: Ilustration of the two Epstein-Poincaré surfaces associated with the two

connected component of C~ ¢ and the map h;.

respectively and in ¢ parameters. Consider ¢ sufficiently small so that for z € D with
|z| > 1—¢ we have that Epq, (f;(z)) belongs to the parametrized neighbourhood U,, from
Proposition 4.6. Take the horizontal line L; . (horocycle centered at oo € @) obtained by
varying the second G-coordinate in U,, starting from Epq, (f¢(2)), and define h(z) € D*
to be the point such that Epg-(g¢(h¢(2))) is the first point of intersection of the horizontal
line with Epg-. See Figure 1 for an illustration.

Clearly along 0D the map h; agrees with g, Lo f,, and from the regularity of f;, g; and
the G-coordinates of U,, we can see that the 1-parameter family of functions h; is c3e
in 1 —e < |z] <1 and t-parameters. Moreover, we can make ¢ sufficiently small so that
h is a diffeomorphism with its image.

For r sufficiently close to 1, define the cylindrical neighbourhood A(r) of vy as fo({r <
|z| <1})Ugo(ho({r < |z| < 1})), which we parametrize by S* x [r,1/7], sending (p, s) to
fo(sp) if s < 1 and sending (p, s) to go(ho(2)) if s > 1. These cylindrical neighbourhoods
are nested as r grows, and their intersection as r — 17 is 7p. Define as well Q(r), Q*(r)
the components of C \ A(r) in Qo and €, respectively.

Define a 1-parameter family of homeomorphisms F; : C — C so that for z € Qg we define
Fi(2) = fo(f7 (=), for 2 € go(he({1 — & < |2] < 1})) we define Fi(2) = go(hi (g™ ()));
and we extend F} to the rest of Qf as a C*® map in both Qf and ¢ parameters. Let us
also fix Fj to be the identity. It follows then that Fi|o, is a conformal map between
Qo and 4, and Fy|,, parametrizes 7;. Given a parameter 7 so that 1 —e <r < 1, we
construct the family of piecewise smooth maps E,.; : 5% — H? satisfying the following
properties:

(C1) In Q(r),2*(r) the map E,; is defined as the composition of F} with the Epstein-
Poincaré maps Epg,,, Epgf of ;.

(C2) Considering the parametrization of A(r), for each p € S, E,..({p} x [r,1/r]) is the
straight R® segment joining Epq, (f;(z)) and Epq: (ge(he(2))).

(C3) The curve E,.;(y x {r}) is given by the image of a curve 7,; in Q*(;) under the
Epstein-Poincaré map.

Given that under our conditions the Epstein-Poincaré maps agree up to order 2 at 7,
conditions (C1), (C2) and (C3) can be all satisfied for r sufficiently close to 1. For such
fixed r the map E,; is piecewise smooth, and it is C** while restricted to Q(r), A(r), Q*(r)
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on both those parameters and t.

We prove the following main theorem in this section.

Theorem 5.1. Let v; be a I-parameter family of C>* Jordan curves (o > 0). Then the
first derivative of the volume V (7) is computed by

9
ot

1 1
V() = /Q Eps) <5H 4 4<5I,]I)da) + [ Epy <6H 4 4(6I,H>da>

t=0 Qr
where Epq, Epg- are the Epstein-Poincaré maps of Q,Q* (respectively); 1,1, H,da are
the metric, second fundamental form, mean curvature and area form of the images of

Epq, Epg«; and § denotes first order variation.

As in the convex cocompact case (see for instance [23,29]) the main idea is to prove the
analogous to the Schléfli formula for domains with piecewise smooth boundary by using
Stokes theorem. While in our case the region bounded by Epg and Epg- is non-compact
and hence a new difficulty has been introduced, we have already taken the first step
to deal with this by approximating with the (compact) region bounded by E,;. Even
with this approximation, the map E,; could fail to be a piecewise immersion, as the
Epstein-Poincaré maps define branched surfaces in general. This happens when the
principal curvatures at infinity are equal to 1 at a given point, and hence the term
6H + (6L, I)da is not well-defined. Regardless, we will see (Lemma 5.2) that we have a
well-defined normal and a well-defined (parametrized) shape operator. This will allow us
to still establish a geometric identity (Proposition 5.4) that will express the variation of
volume as the integral of a well defined 2-form Tr((V¢(B-), DE,-)) plus an exact form
(see (5.4)). The notation Tr((V¢(B-), DE,-)) will be explained by the discussion following
(5.3), from where we will see that Tr((V¢(B-), DE,-)) is the continuous extension of
Epg q- <5H + i(él, ]I>da) to the non-immersed points. Then after using Stokes theorem
and making r — 17, we will obtain the identity of Theorem 5.1 by verifying that all
other integrals (both from the approximation by E,; and Stokes theorem) go to 0.

We first address the definition of the normal and (parametrized) shape operator for E, ;.

Lemma 5.2. Along each (1), A(r), ¥*(r), on the image of E,+(p) there is a well-defined
vector i that is normal to the image of DE,;. Such normal vector fi varies piecewise
C3 on r,t,p, and more precisely it is C>* while restricting p to either Q(r), A(r), Q*(r).
Moreover, there is a piecewise C*® family of linear maps By+(p) : R?2 — it (E,+(p)) so
that at any point where E,; is an immersion, B, ; agrees with the pullback by E,; of the
shape operator of the image of E, ;.

Proof. For Q(r),2*(r) the existence of 7 follows from the construction of the Epstein-
Poincaré map, see (3.8), and from the map F,; being piecewise C*®. For A(r), each
curve E, (v x {r}) is embedded for r sufficiently close to 1, as it converges to F;(S1) as
r — 0. Since the segment E,;({p} x [—r,7]) belongs to a perpendicular of v; that varies
smoothly on the data, we define 7 as the orthogonal vector to this line and E, ¢(v x {r}),
taken so that the third coordinate of 7 is positive. This makes 77 well-defined for r
sufficiently close to 1.
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For Q(r),Q*(r), Bri(p) is clearly defined as the shape operator in E,; coordinates at
points where E,; is an immersion. This is not well-defined at points of Q(r), Q*(r)
where the curvatures at infinity are +1, since by the duality the metric I(X,Y) =
%I (X 4+ B*X,Y + B*Y) will vanish precisely at directions X at infinity whenever
B*X = —X. In particular X is an eigenvalue of B*, which remains true if we rescale the
metric by a constant factor. Rescale then the conformal metric by a factor e, so now
the map E,; becomes an embedding and |BX| = (14 e %)|X|*. Sending ¢ — 0 we see
that we can extend B, ;X as a vector of norm 2 orthogonal to 7 for | X|* = 1.

For the region A(r) we can define B,.; by observing that the map E,; is the composition
of a smooth map into the horizontal lines described in step (C2). The union of these lines
are immersed for 7 sufficiently close to 1, and hence have a well-defined shape operator.
Hence we define B,.; as the pullback of such shape operator by E, ;.

It is clear form the definitions that 77 and B, ; are piecewise C*% C** respectively. [

Remark 5.3. While E,; may fail in general to be a piecewise immersion, it is an
immersion while restricted to the edge locus OA(r). Moreover, from the definition of the
normal vector 77 we have that the dihedral angles are well-define and vary C*“ along
t and the base point. When appropriate, we will simplify notation by dropping r,¢
sub-indices.

The following proposition generalizes the key formula to prove the differential Schlalfi-
formula (see [29, Proposition 5]). Let %’t:oEr,t = ¢ be the piecewise defined vector field
by the first order variation on ¢, and let V denote the Levi-Civita connection of H?.

Proposition 5.4. For any p € C~ v and u,v € R? we have
(Ve(Bu), DEyv) = —(VpE,wVent, DEyu) + (R(§, DEyu)ii, DEyv) (5.1)
where we follow the convention R(X,Y)Z =VyVxZ —VxVyZ + Vixy)Z-
Proof. Let us verify first that we have the equality
(Briu, DE.v) = —(VpEg, wit, DE;v)

Where E,; is an immersion, this follows from the relation between the shape operator
and the second fundamental form. In directions when DE, ; fails to be injective both
sides vanish. Taking then derivative in ¢ we have

(VeBu, DEv) + (Bu,V¢v) = —(V¢VpE, wit, DEv) — (VpE, uf, Ve DEv)

= —(VpE, Ve, DE, ) + (R(&, DEyu)it, DEyw) — (Vpg, ity Ve DE, 1) 52)
If £ is an immersion we have that (Bu,V¢v) = —(Vpg, 7, VeDE,.1v). Since we can
extend the equality by continuity, we have then
(VeBu, DEv) = —(VpEg,Veit, DEv) + (R(§, DEyu)ii, DEyv)
as claimed. O
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Remark 5.5. At points where F is an immersion, we can write (V¢Bu, DEv) as
(V¢Bu, DEv) = (B'(DEu), DEv) + (V &, DEv)

which is the formula appearing in [29, Proposition 5], where B’ is the derivative of the
shape operator in the immersed surface image.

The next step involves tracing the formula (5.1) with respect to the metric in the image
of E,; and multiply it by its area form (both induced from H?). Note that the trace
of (R(§, DEy-)ii, DE,-) is —2({, 1) E*da, which is a multiple of the 2-form that appears
in the variational formula for the volume enclosed by the maps F, ;. The remaining
terms in (5.1) lead to the Schléfli formula we are interested in. Hence our next concern
is how to perform this trace when E,; is not am immersion. Let us address first F, ; in
Q(r), Q*(r).

For U C C, ¢ € C*®°(U) denote by E@,EZ, the Epstein map and Epstein Gauss map
for e?|dz|?, respectively. We say that a 2-tensor T : C®°(U) — A?9(U) is compati-
ble if T is a differentiable map so that for any ¢ € C®°(U), z € U,v € R? so that
(DEy)s, (DE,)zv) = 0, we have that T'(¢).(-,v) = 0. Examples of compatible maps
are each summand in formula (5.1).

For any compatible 7' we define Tr(T) € Q%(U) as

TH(T(9))s = lim By (tr((B7L) T(o + €)a)dac), (53)

where tr, da,. are respectively the trace and area form on the orthogonal complement
of E‘;:e. To see that this limit is well defined, observe that for € # 0 sufficiently small
we have that E . is an immersion at x € U. In particular, the limit agrees with
E;‘j(tr((E;l)*T)da) if B, is an immersion at « € U. As an application of Theorem 3.3
we can take orthonormal u,v € R? so that ue := (DEpte)yu, ve := (DEpic)v € THH3
are orthogonal for all . Hence

By (tr((Bgie) T(p + €)o)da)

1 1
_ (Wm +o)(w) + Tl + £)(0,0) ) el fo| dadly

and the limit (5.3) exists even if either or both |u.|, |ve| go to 0 linearly with ¢, since in that
case we have that the respective T'(¢)(u,u), T(¢)(v,v) vanishes and the corresponding
|71,S\T(‘P +e)(u,u), ﬁT(cp + ¢)(v,v) converges to a derivative of T.

For the terms in (5.1) we can make this computation explicit for —(Vpg,, Vi, DEpu)
and (R(§, DEyu)it, DEyv). Observe that at points where E is an immersion we have that
Tr(—(VpE,wVen, DEpu)) is equal to —E*(div(Veri)da) = E*(d((., Veni))) = —d(iv,q),
where iy, is the 1-form defined by u — (DEyu,V¢n). Hence for all points we get
TI‘(—<VDEPUV£T_7:, DEpu>) = —d(ivgﬁ).

For (R(§, DEyu)it, DEyv) = —(&,)(DEyu, DE,v), we can see that this symmetric
tensor is the pullback of a symmetric tensor in 7. Then Tr((R(¢, DE,u)ii, DE,v) =
—2(¢, 1) E*da, which vanishes if F fails to be an immersion.
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Lemma 5.6 (See [29]). At points where E is an immersion, 3 Tr((V¢(B-), DE,")) agrees
with the pullback by E of the form (§H + (51, 1)) da.

We now relate the variation of the volume with Tr((V¢(B-), DE,-)). Following (5.3) and
(5.1) we obtain
Te(Ve(B:), DEy)) = —d(ivgn) — 2(6,7) E*da. (5.4)

For E,; in A(r), we can establish and trace (5.1) in the embedded surface that contains

the image of E,.; (for r sufficiently close to 1) and then take the pullback by E, ;.

Let Va(r, t) be defined as the volume bounded by E, ;. Namely, extend E,.; : S2=C— H3
as a map from the closed ball B3 and define

V@(T,t):::l[;gl?it(vohﬂs)

By Stokes, this definition does not depend on the specific extension of E,; to B3. Since
E,; vary C3% as piecewise maps from (r), Q*(r), A(r), we can take the extension to
vary C%® on t and check that 9;Va(r, t) is given by

OVo = (/ + +/ —<§,ﬁ)E*da>
Q) Jax(r)  JA@)

where £ = 0, E) o, 7 is the normal vector described in Lemma 5.2 and da is the area form
of the orthogonal plane to 7. The negative sign is due to the fact that we are taking
normal vector 7 pointing inward the region bounded by E, ;.

Applying (5.4) we have then

1 1
0, Vo = (/ +/ +/ — Tr((Ve¢(Bu), DEyv)) + d(ivgﬁ))
o Jorr)  Jap) 2 2

Applying Stokes theorem for %d(ivgﬁ) yields the integral of %ivgﬁ over each boundary
component. Since E™! is embedded along OA(r), then as in [29] we have that along
0A(r), we have

, , a0t .
, , a0~ _,

where 67 (x) (respectively 6~ (x)) is the exterior dihedral angle of the planes orthogonal
to A" 7FAM) at E(z) (respectively a2 740 at E(x)), and d¢ is the length form in
H?.

Applying then Stokes for 9;V5 we get

1
ove=([ 4[4[ ST(VBLDE))
o) Jorr)  JAw) 2

1 00" 00~
+ = / ——FE*d{¢ + / E*dﬁ).
2< oa(r) Ot o0+ (r) Ot

28

(5.5)



Proof of Theorem 5.1. Following Lemma 5.6 and Equation (5.5), we only need to prove
that 1
lim = Tr((Ve(B-),DE,)) =0 and

r—=0JA(r) 2
+ —
lim 1(/ 97 pra+ aeE*dE) — 0.
r—=0 2\ Jaq() Ot oax(r) Ot

For the first term, observe that A(r) belongs to the surface described in (C2). These
families of surfaces can be described by

(r,s) = (x(r,s,t),y(r,s,t), z(r, s,t)),

where r, s parametrize the surface as in (C2) for 7. This parametrization extends
smoothly for r = 1 towards the boundary of H? by making z(1,s,t) = 0. Moreover, given
(C1) and Lemma 3.12 we have that z(r,s,t) = O((1 — r)).

Hence the first and second fundamental form (as well as their first order variations) and
the inverse of the first fundamental form are of order at most (1 — )2, from which the
terms H,0H, (§I,1) are uniformly bounded. As the area of A(r) decays at least of the
order of 1 — r, we have that

. 1 _
A ] 2 HUVelB). DE)) =0

Likewise, the functions #* that take each (r,s,t) to the angle between Q(r), Q*(r) and
A(r) at (z(r, s t) y(r, s, t), z(r, s,t)), extend smoothly to » = 1 as right angles. Hence
in partlcular = O((1 —r)). This is not enough for the desired limit, as the curves
o0(r), Q*(r) have length comparable to (1 —r)~!. What we can rather do is use again
that the Epstein-Poincaré surfaces agree up to second order to use parametrizations

72 (s) satisfying (e = (1 — 7))

|92 ) - D

0'(7Z (5)) + 0/ (72 (5))] < C¢?

< (Og?

(5.6)

for some uniform constant C' > 0. Then since the last coordinate of v* is O(¢), we have
that for some uniform constant C' > 0

+ —
/ D7 pear+ / 0 Brae
oo(r) Ot o0+ (r) Ot

<C 9’(%*(8))" dga 0'( 'ya ‘ Hd% (5.7)
9 S
/ e 61 2o d;; ) + 10 o) + 00z ()| G

goes to 0 as € — 0 uniformly in .

We define then Va(r, t) using the parameters of Proposition 4.6, so that V(y:) = Vi(r,t) +
Va(r,t) for any r sufficiently small. For the parametrized region in Va(r,t) we can see
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that the t derivatives of the functions f, g in the proof of Proposition 4.6 agree as well up
to order 2 (in z variable), so by the same argument we have that lim,_,o 9,V (r,0) = 0.

As for any r small we have that 0,V (v) = 9;Vi(r,t) + 9;Va(r,t), we send r to 0 on the
right hand side to obtain

0 1
— = — B-),DE,-
5il_V00= [+ [ 3 TVe(B). D))
which completes the proof by Lemma 5.6. ]

5.2 Variation of mean curvature and Schliafli formula

The following result is proved by Krasnov-Schlenker see [16, Cor. 6.2] for the renormalized
volume of convex co-compact manifolds. We adapt it to the renormalized volume
associated with a smooth Jordan curve.

Theorem 5.7. We have the first order variation of the Vg
1 * 1 * * *
SVa(y) = —7/ SH* + = (6T°,T%) da
4 Jouex 2
where T} = 9 dz% +9 dz? is the traceless part of I*, (A, B) stands for tr[(I*) "' A(I*)~' B].

Proof. By Definition 4.7 and Remark 4.8, we can express 6V as the integral of smooth
2-forms in €2, Q*, so that at points where the respective Epstein-Poincaré maps are
immersions these forms are given by the pullback of the form

(6H + %<51, 1) da — %(5Hda ~ H5(da))

by the respective Epstein-Poincare map. Following [16, Section 6] this pullback is
expressed precisely as —3(6H* + 3 (01*, II§)) da*. As points where the Epstein-Poincaré
maps are immersions are dense in 2, Q* and all forms discussed are continuous, the result
follows. O

More explicitly, we can write the variation of Vi in terms of the Beltrami coefficients.
We consider a C%® family of Jordan curves (7;) as in the previous section and let F}
be the corresponding homeomorphism of C which maps 2y conformally onto £2; and a
diffeomorphism from Qf to Q. For z ¢ 7o, let

0z Fy
e =

— 7 2
= =t + O(t?).

We have in particular, F := %Ft\t:() satisfies
O:F = v, Fi(z) = 2+ tF(2) + O(t%).

Lemma 5.8. We have ||P||oo < 00. Moreover, v|g« € H=H1(Q*) + N(Q*).
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Proof. On € we have that the 1-parameter family F} is conformal, while in Q* we can
write Fy as the composition g; o H; o go, where H; is a C** family of maps that agree
with by ! near OD. As g;, Hy, go extend to the boundary of their respective domains and
are C*% as a family of maps, the L> bound of © follows from the compactness of the
domains.

For the second claim, as (7y¢) corresponds to a differentiable path in Ty(1), the projection
of 7 onto harmonic Beltrami differentials Q~11(Q*) parallel to 91(2*) lies in H~11(Q%).
This completes the proof. O

Corollary 5.9. The first variation of the renormalized volume associated with the family
of deformed Jordan curves (v, := Fi(0)) is given by

5Vi(7) = — Re / b.7g 12z (5.8)

*

where we recall g : D* — QF is any conformal map.

Proof. As v € L* and .#[¢g~!] is continuous functions up to the boundary. The integrals
in (5.8) are absolutely convergent. We only need to check the pointwise identity

(Gom" + § 017, 15) ) da” = 7l )%
on 2*. We have
dFy(z) = dz + t0,F dz + td:F dz + O(t?) = dz + t0.F dz + tv dz + O(t?)
and in the dz, dz coordinates

% 1 e(9,F
AFy () AT = <§(1 X 2ttRe(8zF)) la+ 2tti{ (0 F))) o).

Therefore, the hyperbolic metric in €2, is

e?(1 + 2ts + O(t?)) dFy(2)dF,(z) = I* + te¥ ( o g Re(azF) e

Re(0,F) + s 5 ) +O0(t%).

where s is some smooth function on € and
1 /0 e¥
I* = e¥dedz = = .
e’dzdz 3 <e‘f’ 0)

% Re(0.F) + s
¥ ¥ g
o =e (Re(@ZF)+5 o )

I — 9 0\  (FL(g7h) 0
o~ \o 9/ 0 L)’

we have (using the complexified inner product (A, B) = Re Tr {(I*)—lA(I*)*lB})

We obtain

Recall that

(6%, 1) = 8¢=% Re(.7[g~]).

We obtain the claimed variation formula from Corollary 3.5 which shows H* = —K* =
and which implies dH* = 0. O
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Corollary 5.10. We have for all C>% Jordan curves vy, we have

S(v) = 4Vg(y).

Proof. When ~ is a circle, we have S(7) = 0 and Vg(y) = 0 since both Epstein surfaces
are the geodesic plane bounded by ~. Given a smooth Jordan curve . The variational
formula Proposition 2.4 and Corollary 5.9 show that

S(v) = 4Vr(9)

by taking a smooth deformation from - to a circle. O

5.3 Approximation of general WP curve

The goal of the section is to prove the following theorem.

Theorem 5.11. We have for all Weil-Petersson quasicircle =,

S(v) > 4Vr(7).

We have already proved the equality when v is C%®. We also believe the equality holds
for arbitrary Weil-Petersson quasicircle but are only able to prove the inequality.

For the inequality, we will use the approximation using equipotentials. Let v be a Weil-
Petersson quasicircle, f : D — Q be a conformal map as before. Up to post-composing f
by a Mobius map, we may assume that f(0) =0, f/(0) = 1 and f”(0) = 0. The family of
equipotentials

n—1 n

Yo = fu(SY), where f,(2) := i f (n— 1z>

is a family of analytic Jordan curves. The map f, satisfies the same normalization as f
at 0. We let Q := C~ f,(D) (resp. Q* := C~ f(D)) and g, (resp. ¢) be an arbitrary
conformal map D* — Q (resp, D* — Q*). Apart from the analyticity, the family of

equipotentials is particularly nice because of the following theorem.

Theorem 5.12 (See [32, Cor. 1.5]). Along the family of equipotentials the universal
Liouwille action converges and is non-decreasing. We have

lim 1 8(3) = $(7).

n—oo
If v is not a circle, then S(yni1) > S(7n).
Lemma 5.13. We have

/ Hda 2= Hda. (5.9)
P

Qn UEQZ YoUXgx

Proof. 1t follows from [31, Cor. A.4., Cor. A.6] that the element [,] in Tp(1) associated
with 7, converges to [u] which is associated with . In particular, [31, Chap.I, Thm. 2.13,
Thm. 3.1] imply that

LI = [ |17 Ros" a2 222 [ 12(5) o a2z,
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1

As Ty(1) is a topological group, we have [u,] ™! converges to [u]~! which implies

L1l 2 = [ 17005t a2 2225 [ .7 () oo d

Using (3.11) the proof is completed. O

Lemma 5.14. Let V5 .(y) denote the signed volume between Epq and Epg« above the
level . We have Va - (y,) converges to Vo (7y) for all e € (0,1).

Proof. For this, we denote for ¢ € (0,1),

Ks,n::{CED:fnofn(C)Ze}v KEZ:{CGDZfOf(C)Z6},

where (yn, &) is the Epstein-Poincaré map on the domain Q,, = f,(D). By (3.17), we
have for all n,

dist(fn (), yn)
)

which implies for all ¢ € K. ,,,

< |&n o fu(Q)] < 4dist(fn(C); Vn)

dist(fn(¢), Yn) = €/4.

It is not hard to see that f,, converges uniformly to f on D from the explicit expression.
However, it holds more generally for any sequence of normalized conformal maps repre-
senting converging sequence in Tp(1). In fact, we extend f,, to a K-quasiconformal map
of @, where K is independent of n since a converging sequence in Ty(1) is also bounded
in T'(1). The family of K-quasiconformal maps, normalized as f,, is a normal family
and converges uniformly along subsequences on all compact sets of C. As the limit on D
is f, the convergence is thus along the whole sequence when restricted to D. Moreover,
the derivatives of f, converges to the derivatives of f uniformly on compact sets of D by
Cauchy’s integral formula.

Hence, there exists ng such that for all n > ng, we have

[fn = flloom < €/16.

This implies
dist(f(¢),7) =2¢/8 and o f(C) = €/40.

Summarizing, we have for all n > ng,
Ka,n C Kz—:/40'

Since K, /49 is a compact set in D independent of n, we have that all derivatives of f,
converge uniformly to the derivatives of f on K, 4. As the Epstein-Poincaré map only
depends on f, f’, and f”, Epq, of, converges uniformly to Epg of uniformly on K40
Similarly argument applies to the Epstein-Poincaré maps Epg: ogn. We obtain that
Va.e(vn) converges to Vo (7). O

We obtain the following corollary.
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Corollary 5.15. If v is a Weil-Petersson curve, then

1 (4 1
V() <={S() - = Hda | < oco.

4 2 J5quUsax
Proof. For small enough € > 0,
Voo (7) 1'V()<1'1S()1 Hd 1§;()1 Hd

= lim im — - = al =~ - = a
2,e\Y o 2,e\Tn) > oo 4 Tn 9 SIS 4 Y 9 SoUS

by Theorem 5.12. We obtained the inequality by taking ¢ — 0. O

Theorem 5.11 follows immediately from this corollary.

6 Gradient flow of the universal Liouville action

Following Bridgeman-Brock-Bromberg [4] and Bridgeman-Bromberg-Vargas Pallete [5],
we introduce the following flow on 7'(1). For [u] € T'(1) we have a natural isomorphism
TiT(1) ~ Qb1 (D*). We therefore define the vector field

Vi = 4298 ¢ g1 pe,

P~
Theorem 6.1. The vector field V' has flowlines that exist for all time on T'(1). The
flow restricts to a flow on Ty(1) and is the (negative) Weil-Petersson gradient of the
Liouville functional S. Furthermore all flowlines on Ty(1) limit to the origin [0] which
corresponds to the round circle.

Proof. By the Nehari bound we have that in the Teichmiiller metric on T'(1), ||V||eo < 6.
Thus as T'(1) is complete in the Teichmiiller metric, the flow under V' exists for all time
on T'(1). If [u] € Tp(1) then by the characterization (2.4) we have

| 7@t < .

Thus Vj,) € H™ 5 (D*) ~ T, To(1) and therefore by integrability the flow preserves To(1).
Furthermore if # € H~11(D*) ~ T}, To(1) then by Theorem 2.1

(dS)((v) = 4Re/* 0.7 (gu) = —Re /D* U Vi) por = — <V[u]’ D>Wp'

D

Therefore VywpS = —V and
ds(v) = —~[|VI[ve-

We consider the flowline Ry — Tp(1) : t — «(t) for V starting at a point [u] = a(0) €
To(1). Since S > 0, for all T > 0,

T
0< /0 IV (a()][? dt = S([u]) = S((T)) < S([u))-
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Thus o
| IV at < .

We therefore have a sequence t,, — oo such that
Tim [V (a(ta))llwe = 0.

By [31, Ch.I, Lem. 2.1], we have if ¢ € A (D) then

3
e < 116l (6.

Tim [[V(@(ta)) | = 0.

Therefore

Thus the conformal maps g, ,,) have Schwarzian .7 (g,(,)) — 0. By normalcy, we obtain
a subsequence Gatn,) converging uniformly on compact sets to a Mobius map preserving
—1,1,i. Therefore lim;_, a(ty,;) = [0], the origin of Tp(1).

To show that the flow line converges to [0], we observe that [0] is the unique global
minimum for S on Ty(1). Therefore there is a neighborhood of [0] € Ty(1) which is an
attractor. By the above, a enters this neighborhood and therefore it converges to [0]. O

Using the gradient flow we may bound the Weil-Petersson distance between [u] and [0]
by the universal Liouville action. We first recall some results proved by Takhtajan and
Teo that we summarize in the lemma below.

Lemma 6.2 ([31, Ch.I, Lem. 2.5, Rem. 2.4, Cor. 2.6]). There exists 0 < § < 1 such that
for all p € Q~H1(D*) with ||u]leo < 6,

PP 1 |1
0= TwP? ~ A—PP|~ 0P

Moreover, for such u, the map Do(8 o Ry,)) : H=YY(D*) — A3(D) is a bounded linear
isomorphism with

[[Do(B o Ryy)()ll2 < 24|l [[v]le < K|[Do(B o Byy)(v)ll2
where K = +/2/(1 — §)2.

Theorem 6.3. With the same constants 6 and K as in Lemma 6.2. Let ¢ < 26\/4m/3
then for [u] € To(1), we have

e(distw (11, [0]) — Ke) < S([u).

Proof. We let t — a(t) be the gradient flow line starting at [u] and 7 be the first time
|V (a(t))|lwp = ¢. Then ||V (a(t))|lwp > ¢ for all ¢ < 7. Thus

(1) = S(a(r)) = [ V(@R dt = ¢ [ V(@) fwe dt = ¢ distwo((il, a(r)).
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‘We have therefore

S([ul) = e(distwe ([u], [0]) — distwe (a(7), [0])).

As ||V (a(7)))|lwp = ¢ then by (6.1), ||V (a(7)))|lco < /3/4mc < 26. Therefore

1B([()D o = 17 (9a(r)lloo < 6/2

where {3 is the Bers embedding T'(1) — As(D*). As 3(To(1)) = B(T(1)) N Ay(D*) the
linear path

1
v(s) :==[sii], where f= B e <2> satisfies ||fi]|p,co < O

for s € [0,1] from 0 to a(7) is in the ball of radius ¢ of T'(1), and also in Ty(1) since by
Ahlfors-Weill theorem

B([si1]) = 57 (gu(r)) € A2(D*).
In the Ly metric on Ay(ID*) this path has length ||V (a(7))|lwp < ¢. By Lemma 6.2 we
have that the preimage of B has therefore length less than Kec. O
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