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Abstract

The universal Liouville action (also known as the Loewner energy for Jordan
curves) is a Kähler potential on the Weil–Petersson universal Teichmüller space which
is identified with the family of Weil–Petersson quasicircles via conformal welding.
Our main result shows that, under regularity assumptions, the universal Liouville
action equals the renormalized volume of the hyperbolic 3-manifold bounded by
the two Epstein–Poincaré surfaces associated with the quasicircle. We also study
the gradient descent flow of the universal Liouville action with respect to the Weil–
Petersson metric and show that the flow always converges to the origin (the circle).
This provides a bound of the Weil–Petersson distance to the origin by the universal
Liouville action.
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1 Introduction

The Riemann sphere Ĉ is the conformal boundary of the hyperbolic 3-space H3. In [15]
C. Epstein gave a natural way to associate to each conformal metric on Ĉ a surface in H3.
In more recent work, these Epstein surfaces have been used to define the renormalized
volume of a hyperbolic 3-manifold which has deep connections to Teichmüller theory of
Riemann surfaces and Liouville theory in mathematical physics [21,22,38]. We will recall
the basics on Epstein surfaces in Section 3.
In this work we define and study the renormalized volume for the universal Teichmüller
space, which can be identified with the set of quasicircles on the Riemann sphere up to
conformal automorphisms.
For this, consider a Jordan curve γ ⊂ Ĉ, we let Ω and Ω∗ be the two connected components
of Ĉrγ. Let EpΩ : Ω→ H3 be the Epstein map associated with the Poincaré (hyperbolic)
metric ρΩ in Ω, similarly for EpΩ∗ : Ω∗ → H3. The maps EpΩ, EpΩ∗ are smooth, extend
continuously to the identity map on γ, and are immersions almost everywhere. We call
their images as the Epstein–Poincaré surfaces ΣΩ and ΣΩ∗ . In particular, we note that,
unlike in the cases previously considered (see [22], [7]), these Epstein–Poincaré surfaces
are non-compact and not necessarily embedded and have infinite area. We show the
following results.
Proposition 1.1 (See Proposition 4.2). If γ is not a circle, then the two Epstein–Poincaré
surfaces ΣΩ and ΣΩ∗ are disjoint.

It follows directly from the definition of Epstein–Poincaré map that if γ is a circle, then
both ΣΩ and ΣΩ∗ are the totally geodesic plane bounded by γ with opposite orientation.
See Lemma 3.7.
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Proposition 1.2 (See Corollary 3.14). When γ is asymptotically conformal (see Theo-
rem 3.10 for the equivalent definitions), there is a neighborhood of γ in Ĉ on which the
Epstein–Poincaré maps EpΩ and EpΩ∗ are immersions and embeddings which extend to
the identity map on γ.

Quasicircles are in natural correspondence with points in the universal Teichmüller space
T (1), where we identify a quasicircle with its conformal welding homeomorphism. We
are interested in a special class of quasicircles, i.e., Weil–Petersson quasicircles, which
corresponds to the Weil–Petersson universal Teichmüller space T0(1). This space has
been studied extensively for it being the connected component of the unique homogeneous
Kähler metric on T (1) (i.e., the Weil–Petersson metric) [39], and has a large number of
equivalent descriptions from very different perspectives, see, e.g., [5, 13,17, 25,34, 42, 43].
Weil–Petersson quasicircles are asymptotically conformal, so Propositions 1.1 and 1.2
allow us to define the signed volume between ΣΩ and ΣΩ∗ . A priori, this volume takes
value in (−∞,∞] (see Section 4.2 for more details). However, we show the following
result.

Theorem 1.3. If γ is a Weil–Petersson quasicircle, then the signed volume between the
two Epstein–Poincaré surfaces, denoted as V (γ), is finite.

See Proposition 4.4 for the proof for smooth Jordan curves. The result for general Weil–
Petersson quasicircles is obtained via an approximation argument, see Corollary 5.18.

Since T0(1) has a unique homogeneous Kähler structure, its Kähler potential is of critical
importance. Takhtajan and Teo defined the universal Liouville action S on T0(1) and
showed it to be such a Kähler potential [39]. In this work, we will consider the universal
Liouville action as defined for Jordan curves (see Section 2.3), and denote it as S̃ for
clarity. The functional S̃(γ) can actually be defined for arbitrary Jordan curves, but it is
finite if and only if γ is a Weil–Petersson quasicircle. Moreover, S̃ is invariant under the
action of Möbius transformations on Ĉ (i.e., under the PSL2(C) action). As the PSL2(C)
action extends to orientation preserving isometries of H3, it is very natural to search for
a characterization of the class of Weil–Petersson quasicircles and an expression of S̃ in
terms of geometric quantities in H3.
A pioneering work of C. Bishop [5] shows that the class of Weil–Petersson quasicircles
can be characterized as Jordan curves bounding minimal surfaces in H3 with finite total
curvature. We obtain the following similar characterization in terms of Epstein–Poincaré
surfaces. See also Section 7 where we compare Epstein–Poincaré surfaces to minimal
surfaces and the convex core, answering a question of Bishop [4].
In fact, the Epstein maps come with a well-defined unit normal ~n pointing away from Ω
and from Ω∗ respectively. The mean curvature H := tr(B)/2 is defined using the shape
operator B(v) := −∇v~n.

Theorem 1.4 (See Corollary 3.6). We have for all Jordan curves,∫
ΣΩ
H da =

∫
ΣΩ
|H da| =

∫
ΣΩ
|detB da| =

∫
D
|S (f)(z)|2 (1− |z|2)2

4 d2z
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where f : D→ Ω is any conformal map, S (f) = f ′′′/f ′−(3/2)(f ′′/f ′)2 is the Schwarzian
derivative of f , da is the area form induced from H3 and the Epstein maps, and d2z is
the Euclidean area form.
In particular, ΣΩ has finite total mean curvature (and finite total curvature) if and only
if γ is a Weil–Petersson quasicircle.

Prior to this work, no exact identity between the Kähler potential and geometric quantity
in H3 was known. The main result of this work is to provide such an identity.

Definition 1.5. Let γ be a Weil–Petersson quasicircle. We define the renormalized
volume (or W-volume) associated with γ as

VR(γ) := V (γ)− 1
2

∫
ΣΩ∪ΣΩ∗

Hda ∈ (−∞,∞).

The definition is reminiscent to the renormalized volume1 for quasi-Fuchsian manifolds
[22, 38]. But we emphasize again that ΣΩ and ΣΩ∗ are non-compact so the analysis
involves additional technicalities.

Theorem 1.6 (See Corollary 5.12 and Theorem 5.13). If γ is a C5,α Jordan curve with
α > 0, we have

S̃(γ) = 4VR(γ). (1.1)

If γ is a Weil–Petersson quasicircle, then we have S̃(γ) ≥ 4VR(γ).

Let us comment briefly on the proof of this theorem. It is easy to check that when γ is a
circle, both sides of (1.1) are zero. We show under regularity assumptions that the first
variation of both sides are equal. The variation of S̃ was proved in [39], which we recall
in Theorem 2.1. The first variation of VR is more laborious since the Epstein–Poincaré
surfaces are not compact and are immersed only almost everywhere. After administering
appropriate truncation (where we make use of the regularity assumption), we re-derive
the Schläfli formula which expresses the variation of VR in terms of the mean curvature
H, the metric I and the second fundamental form II on Epstein surfaces (Theorem 5.2 and
Theorem 5.7, with some of the technical details in Section 8), then translate the variation
formula into quantities defined directly on Ω,Ω∗ ⊂ Ĉ (Theorem 5.9 and Corollary 5.11).
For a general Weil–Petersson quasicircle γ we use an approximation by equipotentials
(they are analytic curves and the universal Liouville action increases to that of γ). We
believe the identity (1.1) also holds for a general Weil–Petersson quasicircle. However,
our approximation argument only implies the inequality due to the lack of tightness for
the volume between the Epstein–Poincaré surfaces, see Section 5.5.

The second topic of this work concerns the gradient descent flow of S with respect to the
Weil–Petersson metric. We proceed similarly as in Bridgeman–Brock–Bromberg [7]. For
[µ] ∈ T (1) we have a natural isomorphism T[µ]T (1) ' Ω−1,1(D∗).

1Renormalized volume of a convex co-compact hyperbolic 3-manifold is referred to the difference
between the volume and half of the boundary area defined through a foliation near the ends. Our formula
is similar to the definition of the W-volume. However, in the convex co-compact case, they only differ by
a multiple of Euler characteristics of the boundary [22, Lem. 4.5].
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Theorem 1.7 (See Theorem 6.1). The negative gradient of S on T0(1) with respect to
the Weil–Petersson metric is the vector field

V[µ] := −4S (gµ)
ρD∗

∈ Ω−1,1(D∗).

Moreover, the gradient descent flow of S starting from any point in T0(1) converges to
the origin [0] which corresponds to the round circle.

In fact, we also show that the flow starting from any point in T (1) using the vector
field V exists for all time. But here, V cannot be interpreted as the gradient of S if
[µ] /∈ T0(1), and we do not know the limit and think it is an interesting question. Using
the gradient flow, we also obtain bounds of the Weil–Petersson distance on T0(1) in
terms of the universal Liouville action.

Theorem 1.8 (See Theorem 6.3). There exist universal positive constants c and K such
that for all [µ] ∈ T0(1), we have c(distWP([µ], [0])−Kc) ≤ S([µ]).

Finally, let us make a few remarks on the motivation behind this work and additional
comments on the relation with previous works.
Rohde and the last author introduced the Loewner energy for Jordan curves [30, 41]
which is originally motivated from the large deviation theory of random fractal curves
Schramm-Loewner evolutions (SLE) [41,44]. It is shown in [12] that the Loewner energy
is the Onsager–Machlup (or the action) functional of the SLE loop measure. It turns out
quite surprisingly that the Loewner energy equals exactly S/π as proved in [42]. Since we
will not make use of Loewner theory but only the fact of S is a Kähler potential on T0(1),
we adopt the terminology of universal Liouville action here. SLEs play a central role in
the emerging field of two-dimensional random conformal geometry. In particular, they
provide a mathematical description of the geometric patterns in the scaling limits of 2D
critical lattice models [23,33, 35] and 2D conformal field theory (CFT) [2, 14, 18,27]. On
the other hand, H3 is the Riemannian analog of AdS3 space. Our main result Theorem 1.6
can be interpreted as the holographic principle for the Loewner energy that is reminiscent
of the conjectural AdS3/CFT2 correspondence pioneered by Maldacena [24] (see also,
e.g., [26,45]). The authors are not aware of a (even conjectural) holographic principle for
SLE nor for random conformal geometry in general, this work may be a first step towards
this direction. We also mention [19] gives a holographic expression for determinants of
discrete Dirac operator on periodic bipartite isoradial graphs.
Renormalized volume as a Liouville action has been previously studied for convex co-
compact group actions inH3 (see work by Takhtajan–Teo [38] and Krasnov–Schlenker [22]),
or equivalently, for conformally compact hyperbolic metrics. A set of applications of this
study are bounds for the hyperbolic volume of mapping tori of pseudo-Anosov maps
in term of their Weil–Petersson translation length (by Brock [11]) or their entropy (by
Kojima–McShane [20]). This uses a bound (by Schlenker [32]) for renormalized volume in
terms of Weil–Petersson distance by studying the gradient of the Liouville action, similar
to our bound in Theorem 6.3. Moreover, we show in Theorem 6.1 that every flowline of
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the gradient converges to the absolute minimum, in analogy to the result done by the
first three authors [10] for the relatively acylindrical case. This builds on work by the
first two authors and Brock [7], where they used the gradient flow to find the minimum
of renormalized volume for a boundary incompressible hyperbolic 3-manifold.

The paper is organized as follows: In Section 2 we collect the basics about universal
Teichmüller space, its Kähler geometry, characterizations of the Weil–Petersson universal
Teichmüller space, and the universal Liouville action. In Section 3 we recall the definition
of Epstein surfaces and the correspondence between geometric quantities on the surface
and those on the conformal boundary. We also prove the immersion and embeddedness of
the Epstein–Poincaré surfaces associated with an asymptotically conformal Jordan curve.
In Section 4 we study the relation between the two Epstein–Poincaré surfaces associated
with the same curve. We show that they are disjoint (except for a circle), and that if
the curve is regular enough, the signed volume between the Epstein–Poincaré surfaces is
finite. In Section 5, we prove the variational formula for the renormalized volume and
prove Theorem 1.6. Section 6 is independent from Sections 3, 4, and 5 and deals with the
gradient flow of the universal Liouville action. Similarly, Section 7 describes the relative
position of Epstein–Poincaré surfaces with respect to minimal surfaces and convex core.
Section 8 collects the technical details and proves the Schläfli formula for the volume
bounded by non-immersed Epstein–Poincaré surfaces.
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2 Universal Weil–Petersson Teichmüller space

2.1 Universal Teichmüller space

We first briefly recall a few equivalent descriptions of the universal Teichmüller space
T (1). Let Ĉ = C ∪ {∞}, D = {z , |z| < 1}, D∗ = Ĉ − D and S1 = ∂D. The group of
orientation preserving conformal automorphism of Ĉ is

Möb(Ĉ) = PSL2(C) =
{
A =

(
a b

c d

)
: a, b, c, d ∈ C, ad− bc = 1

}
/A∼−A

which acts on Ĉ by Möbius transformations z 7→ az + b

cz + d
. The subgroup preserving S1 is

Möb(S1) = PSU1,1 =
{
A =

(
α β

β̄ ᾱ

)
: α, β ∈ C, |α|2 − |β|2 = 1

}
/A∼−A

6



which is isomorphic to PSL2(R). There are a number of equivalent descriptions of T (1)
that we will use.

Quasisymmetric maps: We write QS(S1) for the group of sense preserving quasisym-
metric homeomorphisms of S1. The universal Teichmüller space is

T (1) := Möb(S1)\QS(S1) ' {ϕ ∈ QS(S1), ϕ fixes −1,−i and 1}.

T (1) is endowed with a group operation given by the composition and the origin is the
identity map IdS1 .

Beltrami Differentials: Given a Beltrami differential

µ ∈ L∞1 (D∗) = {µ ∈ L∞(D∗), ||µ||∞ < 1},

we extend it to Ĉ by reflection, i.e., define for z ∈ D,

µ(z) = µ

(1
z

)
z2

z2 .

Let wµ : Ĉ→ Ĉ be the solution to the Beltrami equation ∂zwµ = µ∂zwµ fixing −1,−i
and 1. Then wµ preserves S1 and wµ|S1 ∈ QS(S1). Since every quasisymmetric circle
homeomorphism can be extended to a quasiconformal self-map of D, we have

T (1) = L∞1 (D∗)/∼

where µ ∼ ν if and only if wµ|S1 = wν |S1 . We denote by Φ : L∞1 (D∗) → T (1) the
projection µ 7→ [µ]. Here the origin corresponds to [0].

Univalent maps: If instead we extend µ by 0 on D and let wµ be the unique solution
to wµz = µwµz fixing −1,−i and 1, then wµ is conformal on D. The map [µ] 7→ wµ|D
identifies T (1) with

{f : D→ Ĉ, univalent fixing −1,−i and 1, extendable to q.c. map of Ĉ}, (2.1)

since µ ∼ ν if and only if wµ = wν on D. The origin corresponds to IdD.

Quasicircles: By Riemann mapping theorem, the previous identification also gives

T (1) ' {γ quasicircle passing through − 1,−i, and 1} (2.2)

by the map [µ] 7→ γµ := wµ(S1). The origin corresponds to γµ = S1. We can recover the
quasisymmetric circle homeomorphism from γµ via conformal welding. Let Ω (resp. Ω∗)
denote the connected components of Ĉ r γµ where −1,−i, 1 are in the counterclockwise
direction of ∂Ω (resp. clockwise direction of ∂Ω∗). Let fµ = wµ|D : D → Ω and
gµ : D∗ → Ω∗ be the conformal maps fixing −1,−i, 1. Then,

wµ|S1 = g−1
µ ◦ fµ|S1

since gµ = wµ ◦w−1
µ |D∗ . We call g−1

µ ◦fµ|S1 the welding homeomorphism of the quasicircle
γµ passing through −1,−i, 1.
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2.2 Kähler Structure and Weil–Petersson Teichmüller space

We first define the following spaces,

A∞(D∗) = {φ : D∗ → C holomorphic, sup
D∗
|φ|ρ−1

D∗ <∞},

A2(D∗) = {φ : D∗ → C holomorphic,
∫
D∗
|φ|2ρ−1

D∗ d2z <∞} ⊂ A∞(D∗),

where ρD∗(z) = 4/(1 − |z|2)2 is the hyperbolic density function and d2z = dx ∧ dy if
z = x + iy. The inclusion is shown in [39, Lem. I.2.1]. We define the similar spaces
A∞(D) and A2(D) (and also A∞(Ω) and A2(Ω)). We will also use the spaces of harmonic
Beltrami differentials defined as

Ω−1,1(D∗) = {ν̇ ∈ L∞(D∗), ν̇ = ρ−1
D∗ φ, φ ∈ A∞(D∗)};

H−1,1(D∗) = {ν̇ ∈ L∞(D∗), ν̇ = ρ−1
D∗ φ, φ ∈ A2(D∗)} ⊂ Ω−1,1(D∗).

The universal Teichmüller space T (1) has a canonical complex structure such that
Φ : L∞1 (D∗)→ T (1) is a holomorphic submersion. The holomorphic tangent space at the
origin is

T[0]T (1) = L∞(D∗)/ ker(D0Φ) ' Ω−1,1(D∗)

where

ker(D0Φ) = N(D∗) := {ν̇ ∈ L∞(D∗) :
∫
D∗
ν̇φ = 0, ∀φ holomorphic and

∫
D∗
|φ|d2z <∞}

is the space of infinitesimally trivial Beltrami differentials.
The space L∞(D∗) has a natural group structure given by the associated quasiconformal
maps. We define λ = ν ? µ−1 if wλ = wν ◦ w−1

µ . Thus

λ =
(
ν − µ
1− µν

∂zwµ

∂zwµ

)
◦ w−1

µ .

We define Rµ to be right multiplication by µ on L∞(D∗). This descends to give a
map Rµ : T (1)→ T (1). Furthermore, the complex structure on T (1) is right-invariant.
Therefore, D0R[µ] : T[0]T (1) → T[µ]T (1) is a complex linear isomorphism between
holomorphic tangent spaces, and we obtain the identification of T[µ]T (1) ' Ω−1,1(D∗).
To define a Kähler metric on T (1), one needs to endow T (1) with a Hilbert manifold
structure. It is known since [6] that on the subspace M = Möb(S1)\Diff(S1) there is a
unique Kähler metric up to a scalar multiple. However, M is not complete under the
Kähler metric. Takhtajan and Teo extend the Hilbert manifold structure on T (1) by
defining the Hermitian metric on the distribution D([µ]) = D0R[µ](H−1,1(D∗)) ⊂ T[µ]T (1)
induced from H−1,1(D∗):

〈µ̇, ν̇〉 :=
∫
D∗
µ̇ν̇ρD∗d2z, ∀µ̇, ν̇ ∈ H−1,1(D∗).

They prove that this distribution is integrable and define T0(1) to be the connected
component containing [0] which is called the Weil–Petersson Teichmüller space. The
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Hermitian metric defined above is called the Weil–Petersson metric. (One may draw the
similarity with the Weil–Petersson metric on Teichmüller spaces of a Fuchsian group Γ
where the integral is over D∗/Γ.) In terms of the four equivalent definitions of T (1), the
subspace T0(1) is characterized as follows:

Quasisymmetric maps: Y. Shen [34] showed ϕ ∈ T0(1) if and only if ϕ is absolutely
continuous with respect to the arclength measure, and logϕ′ ∈ H1/2(S1), namely the
fractional Sobolev space of functions u such that

‖u‖2H1/2 :=
∫∫

S1×S1

∣∣∣∣u(ζ)− u(ξ)
ζ − ξ

∣∣∣∣2 dζdξ <∞. (2.3)

Beltrami Differentials: It is shown in [39] that [µ] ∈ T0(1) if and only if it has a
representative µ ∈ L∞1 (D∗) such that∫

D∗
|µ(z)|2ρD∗(z)d2z <∞.

Univalent maps: It is shown in [39, Thm. II.1.12] (see also [13]) that a univalent function
f : D→ Ĉ fixing −1,−i, 1 and extendable to a quasiconformal map of Ĉ, corresponds to
an element of T0(1) via the identification (2.1) if and only if the Schwarzian derivative

S (f) :=
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

satisfies ∫
D
|S (f)|2ρ−1

D d2z <∞. (2.4)

In other words, the Bers’ embedding β([µ]) := S (f) ∈ A2(D).
Furthermore, let f̃ = A ◦ f where A is a Möbius map sending Ω = f(D) to a bounded
domain (as a priori, Ω may contain ∞). Then f ∈ T0(1) if and only if∫

D
|N (f̃)|2d2z <∞ (2.5)

where N (f̃) = f̃ ′′/f̃ ′ is the nonlinearity of f̃ . We note that the expression in (2.4) is
invariant under the transformation f → A ◦ f ◦B, for all A ∈ PSL2(C) and B ∈ PSU1,1
but the expression in (2.5) is not invariant under such transformations.

Quasicircles: A quasicircle passing through −1,−i, 1 which corresponds via (2.2) to an
element of T0(1) is called a Weil–Petersson quasicircle. It is easy to see that if γ and γ̃ are
two quasicircles passing through −1,−i, 1 and γ̃ = A(γ) for some A ∈ PSL2(C), then γ̃ is
Weil–Petersson if and only if γ is Weil–Petersson. Therefore, we may extend the definition
to say that a Jordan curve γ is Weil–Petersson if and only if it is PSL2(C)-equivalent to
a Weil–Petersson quasicircle passing through −1,−i, 1.
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2.3 Universal Liouville action

Takhtajan and Teo introduced the universal Liouville action S on T0(1) and showed it to
be a Kähler potential on T0(1). See [39, Thm. II.4.1]. We will consider it as a functional
on the space of Weil–Petersson quasicircles.
Indeed, let γ be a Jordan curve which does not pass through ∞. Let D and D∗ be
respectively the bounded and unbounded connected component of Ĉ r γ, f : D→ D and
g : D∗ → D∗ be any conformal maps such that g(∞) =∞ (note that D might not be Ω,
it can also be Ω∗, and f and g are different from the canonical maps fµ and gµ). Define

S̃(γ) :=
∫
D
|N (f)|2 d2z +

∫
D∗
|N (g)|2 d2z + 4π log |f ′(0)/g′(∞)| (2.6)

and is PSL2(C)-invariant (it can be seen via the identity with π times the Loewner
energy of γ [42]) and finite if and only if γ is a Weil–Petersson quasicircle. The universal
Liouville action S([µ]) for [µ] ∈ T0(1) is defined as S̃(A(γµ)) where γµ is the Weil–
Petersson quasicircle passing through −1,−i, 1 corresponding to [µ] via the identification
(2.2) and A ∈ PSL2(C) is any Möbius transformation such that A(γµ) is bounded. The
universal Liouville action S satisfies the following properties:

• S([µ]) ≥ 0 for all [µ] ∈ T0(1) (see, e.g., [42, Thm. 1.4]);
• S̃(γ) = 0 if and only if γ is a circle, or equivalently, [µ] = [0].

The first variation formula of S from [39] will be a key ingredient in our proofs. We
now restate it for S̃. Let γ be the Weil–Petersson quasicircle passing through −1,−i, 1
corresponding to an element [µ] of T0(1). Let Ω and Ω∗ be the connected components
of Ĉ r γ as in Section 2.1. Let fµ : D → Ω and gµ : D∗ → Ω∗ be the conformal maps
fixing −1,−i, 1. Let ν̇ ∈ H−1,1(D∗) ' T[µ]T0(1), t ∈ (−‖ν̇‖−1

∞ , ‖ν̇‖−1
∞ ), wt : Ĉ→ Ĉ be the

solution fixing −1,−i, 1 to the Beltrami equation

∂z̄wt
∂zwt

(z) =

0 z ∈ Ω,
t(gµ)∗ ν̇(z) z ∈ Ω∗

where

(gµ)∗ ν̇(z) = ν̇ ◦ g−1
µ

(g−1
µ )′

(g−1
µ )′

.

We let γt = wt(γ) which is a small deformation of γ.

Theorem 2.1 ([39, Cor. II.3.9]). The universal Liouville action satisfies the following
first variation formula. Let ν̇ ∈ H−1,1(D∗) ' T[µ]T0(1),

(dS)[µ](ν̇) = d
dt
∣∣∣
t=0

S̃(γt) = 4 Re
∫
D∗
ν̇S (gµ)d2z = −4 Re

∫
Ω∗

((gµ)∗ν̇) S (g−1
µ ) d2z.

Remark 2.2. We note that compared to the formula in [39], we take the derivative of
S in the real tangent space (which is canonically isomorphic to the holomorphic tangent
space) while [39] takes derivative in the holomorphic tangent space and both derivatives
are related by

(dS)[µ](ν̇) = 2 Re ∂ν̇ S([µ]).
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The last equality in Theorem 2.1 follows from a change of variable and the chain rule for
Schwarzian derivatives which shows

S (g−1) = −S (g) ◦ g−1(g−1′)2.

See another proof of Theorem 2.1 in [37] using the Loewner theory and when ν̇ is
compactly supported.

Remark 2.3. We choose ν̇ to be harmonic Beltrami differential as H−1,1(D∗) is isomor-
phic to T[µ]T0(1). Clearly, the variational formula also holds for ν̇ ∈ H−1,1(D∗)⊕N(D∗)
if
∫
|S (g)|d2z <∞, which is the case, e.g., whenever the curve γ is C3,α for α > 0.

3 Preliminaries on Epstein surfaces

3.1 Definition of general Epstein surfaces

In [15], Epstein associated to a smooth conformal metric ρ on a domain Ω ⊆ Sn a surface
Epρ : Ω→ Hn+1 given by taking an envelope of horospheres based at points of Ω with
size determined by the conformal metric. Explicitly, for x ∈ Hn+1 in the ball model, we
let νx be the hyperbolic visual measure on the unit sphere Sn = ∂Hn+1 from x (namely,
the pull-back of the round metric on Sn by any isometry of Hn+1 sending x to the origin),
then for z ∈ Ω we define

H(z, ρ) = {x ∈ Hn+1 | νx(z) = ρ(z)}.

Then the set H(z, ρ) is a horosphere based at z. The Epstein map Epρ is the solution
to the envelope equation of these horospheres. More precisely, there exists a (unique)
smooth map

Ẽpρ : Ω→ T 1Hn+1

such that Ẽpρ(z) is an outward pointing normal to H(z, ρ) and

Epρ : Ω→ Hn+1

is the composition of Ẽpρ with the projection T 1Hn+1 → Hn+1 and that the image of the
tangent maps of Epρ at z is orthogonal to Ẽpρ(z). We call the image of Epρ the Epstein
surface associated with ρ and denote it by Σρ.
These Epstein surfaces generalize surfaces such as the convex hull boundary and have
had numerous applications in hyperbolic geometry, complex analysis and the study of
univalent functions. We record some basic facts about Epstein maps. The following
property follows directly from the definition.

Lemma 3.1 (Naturality of Epstein map). If x ∈ Hn+1, h ∈ Isom+(Hn+1) we have that
h∗(νh(x)) = νx. Hence it follows

Epρ = h ◦ Eph∗ρ (3.1)

where h∗ρ is the pull-back metric of ρ under h.

11



Theorem 3.2 (See [8, 22]). Let Ω be a domain in Sn and ρ a smooth conformal metric
on Ω. Let ρt = e2tρ for some t ∈ R.

1. The value of Epρ(z) is determined by ρ and its first derivatives at z.

2. We let gt : T1H3 → T1H3 be time t geodesic flow. We have Ẽpρt = g−t ◦ Ẽpρ.
3. Let g−∞ : T1H3 → Ĉ be the hyperbolic gauss map sending a tangent vector to

the endpoint of the associated geodesic ray as t→ −∞. Then g−∞(Ẽpρ(z)) = z.
4. For each z ∈ Ω there are at most two values of t where Epρt is not an immersion

at z.

Whenever Epρ is an immersion we pullback the fundamental forms I, II, III of Σρ with
respect to Epρ to Ω to obtain

II(X,Y ) = I(BX,Y ) III(X,Y ) = II(BX,Y ) = I(BX,BY )

where B is the pullback of the shape operator of Σρ, namely,

DEpρ(BX) = −∇DEpρX Ẽpρ

since Ẽpρ defines a unit normal vector field on Σρ. The eigenvalues {k+, k−} of B are
the principal curvatures of the surface Σρ. The mean curvature H is defined as tr(B)/2.
If It is the pullback of the metric on Σρt under Epρt , then by [22]2,

It(X,Y ) = I(cosh(t)X + sinh(t)BX, cosh(t)Y + sinh(t)BY ).

Expanding out we have
It = 1

4(e2tÎ + 2ÎI + e−2tÎII)

where

Î = I + 2II + III = I((id +B)·, (id +B)·)
ÎI = I− III = I((id +B)·, (id−B)·)
ÎII = I− 2II + III = I((id−B)·, (id−B)·).

These are called the fundamental forms at infinity Î, ÎI, ÎII and it is natural then to define
the shape operator at infinity by B̂ = (id +B)−1(id−B) which satisfies

ÎI(X,Y ) = Î(B̂X, Y ) ÎII(X,Y ) = ÎI(B̂X, Y ) = Î(B̂X, B̂Y ).

Further we define the mean curvature at infinity is Ĥ = tr(B̂)/2. These formulas can be
inverted with B = (id +B̂)−1(id−B̂) and

I = 1
4 (̂I + 2ÎI + ÎII) = 1

4 Î((id +B̂)·, (id +B̂)·)

2We note that our convention for Epstein maps is slightly different from the one in [22], that our
foliation Σρt coincides with their foliation St−(log 2)/2. Our choice is such that when ρ is the Poincaré
metric on the unit disk, the Epstein surface is exactly the totally geodesic plane bounded by the unit
circle. See Lemma 3.7.
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II = 1
4 (̂I− ÎII) = 1

4 Î((id +B̂)·, (id−B̂)·)

III = 1
4 (̂I− 2ÎI + ÎII) = 1

4 Î((id−B̂)·, (id−B̂)·).

If Φ = g(z) dz2 is a quadratic differential (g not necessarily holomorphic) and ρ a
conformal metric then we define the norm of Φ with respect to ρ by

‖Φ(z)‖ρ = |Φ(z)|
ρ(z) . (3.2)

Epstein (see [15, Section 5]) gave the following description of the fundamental forms at
infinity.

Theorem 3.3. Let ρ = eϕ|dz|2 be a conformal metric on Ω. Then

• Î = ρ.

• The Epstein map Epρ is an immersion on {z ∈ Ω | − 1 6∈ {k+, k−}}.
• If K̂ is the Gaussian curvature of Î and ϑ = (ϕzz − 1

2ϕ
2
z) dz2, then

ÎI = ϑ+ ϑ− K̂ρ.

• The eigenvalues of B̂ are

k̂± = 1− k±
1 + k±

= −K̂ ± 2‖ϑ‖ρ.

We note that we have the equation

ρ = I((id +B)·, (id +B)·) = (id +B)∗I. (3.3)

We let dâ be the area form for Î = ρ, then we have the area measure on Σρ satisfies

dA = 1
4 |det(id +B̂)||dâ|.

We define the signed area of Σρ, denoted be da, as the area form with induced orientation
by Ẽpρ, which satisfies

da = 1
4 det(id +B̂)dâ.

Thus dA = |da|.

Corollary 3.4. Let Σρ be the Epstein surface for ρ = eϕ|dz|2. Then at places where
Epρ is an immersion, we have

• Ĥ = −K̂,
• Hda =

(
1−K̂2

4 + ‖ϑ‖2ρ
)
dâ,

• det(B) da =
(

(1+K̂)2

4 − ‖ϑ‖2ρ
)
dâ.
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Proof. As the eigenvalues of B̂ are k̂± = −K̂ ± 2‖ϑ‖ρ we have

tr(B̂) = −2K̂ det(B̂) = K̂2 − 4‖ϑ‖2ρ.

Thus Ĥ = tr(B̂)/2 = −K̂. We also have

H = 1
2(k1 + k2) = 1

2

(
1− k̂1

1 + k̂1
+ 1− k̂2

1 + k̂2

)
= 1− det(B̂)

det(id +B̂)

det(B) = k1k2 =
(

1− k̂1

1 + k̂1

)(
1− k̂2

1 + k̂2

)
= det(id−B̂)

det(id +B̂)
.

From this, we obtain

Hda = 1
4(1− det(B̂))dâ =

(
1− K̂2

4 + ‖ϑ‖2ρ

)
dâ

and
det(B)da = 1

4 det(id−B̂)dâ =
(

(1 + K̂)2

4 − ‖ϑ‖2ρ

)
dâ

as claimed.

3.2 Epstein–Poincaré surface

We now consider the Epstein map associated with the Poincaré metric ρΩ (namely,
complete and K̂ ≡ −1) on a simply connected domain Ω ( C, that we call the Epstein–
Poincaré map EpΩ. We write similarly the Epstein–Poincaré surface as ΣΩ. There are
two connected components of the complement of a Jordan curve γ in Ĉ, we will study
the relation between the two Epstein–Poincaré maps later in Section 4 which will be
crucial to defining renormalized volume. However, let us first record some properties of a
single Epstein–Poincaré map.
As the Euclidean diameter of the horosphere of z ∈ Ω associated with ρΩ goes to 0
as z → ∂Ω, the Epstein map extends to the identity map on ∂Ω (and EpΩ meets Ĉ
along ∂Ω). Epstein showed that in this case, ϑ = S (f−1) the Schwarzian quadratic
differential of f−1, where f : D→ Ω is any conformal map. It follows from above that B̂
has eigenvalues 1± 2‖S (f−1)‖Ω where ‖ · ‖Ω = ‖ · ‖ρΩ is the norm with respect to the
hyperbolic metric ρΩ as defined in (3.2). Thus inverting we have principal curvatures

k± = − ‖S (f−1)‖Ω
‖S (f−1)‖Ω ± 1 . (3.4)

Applying Corollary 3.4 above we have the following result.

Theorem 3.5. Let Ω ( C be a simply connected domain. Then EpΩ is an immersion
on {z ∈ Ω | ‖S (f−1)(z)‖Ω 6= 1}. Furthermore,

Hda = −detB da = ‖S (f−1)(z)‖2Ω dâ = |Hda|.
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Observe that since ‖S (f−1)(z)‖2Ω dâ is a smooth form defined for all points z ∈ Ω and
the set {z ∈ Ω | ‖S (f−1)(z)‖Ω 6= 1} is dense and has full measure, we can uniquely
extend Hda to Ω as ‖S (f−1)(z)‖2Ω dâ and obtain the following corollary from the
characterization (2.4).

Corollary 3.6. A Jordan curve γ is a Weil–Petersson quasicircle if and only if∫
Σ
Hda = −

∫
Σ

det(B) da <∞.

From the formula of the principal curvatures (3.4), we obtain immediately the following
explicit example of Epstein–Poincaré surface.

Lemma 3.7. The Epstein–Poincaré surface associated with D (take f = idD) is the
totally geodesic plane bounded by ∂D and EpD(0) = (0, 0, 1) in the upper half-space model.
From the naturality of Epstein map, if M is a Möbius transformation (which extends to
an isometry of H3 as we explain below), we have EpM(D) ◦M = M ◦ EpD.

Remark 3.8. In particular, the Euclidean radius of the horosphere associated with
ρ = 4|dz|2 is 1/2. From this, we obtain that more generally, the Euclidean radius of the
horosphere associated with ρ is 1/√ρ.

Although totally geodesic planes are trivial examples of Epstein–Poincaré surfaces, the
other Epstein–Poincaré surfaces have an elegant description in terms of these maps
associated with the geodesic planes and osculating Möbius transformations (Lemma 3.9).
Let us first recall the classical result about extending a Möbius transformation to an
isometry of H3. For this, we use the upper half-space model and use quaternions to
parametrize H3 = C ⊕ jR+ = {z + jt | z = x + iy ∈ C, t > 0} (so that (x, y, t) in the
upper-half space is identified with z + jt). A Möbius transformation z 7→ az+b

cz+d , where(
a b
c d

)
∈ PSL2(C) extends to the isometry of H3 by

Z 7→ (aZ + b)(cZ + d)−1, ∀Z = z + jt

using the multiplication on quaternions, see [1, Sec. 2.1] for more details.
Since the Epstein map depends on the metric and its derivatives at infinity (Theorem 3.2),
the Epstein–Poincaré map EpΩ ◦f(z0) depends only on the two-jet of f at z0 (namely
the values of f(z0), f ′(z0), and f ′′(z0)). There exists a unique Möbius transformation
Mf,z0 with the same two-jet as f at z0, called the osculating Möbius transformation of f
at z0. Therefore,

EpΩ ◦f(z0) = EpMf,z0 (D) ◦Mf,z0(z0).

From the naturality of the Epstein map (Lemma 3.1) we have

EpMf,z0 (D) ◦Mf,z0(z0) = Mf,z0 ◦ EpD(z0).

Summarizing, we have proved (assuming z0 = 0) and using Lemma 3.7:

Lemma 3.9. Let Ω ( C be a simply connected domain and f : D→ Ω be a univalent
map. We have EpΩ ◦f(0) = Mf,0 ◦ EpD(0) = Mf,0(j).
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We now state equivalent conditions for a curve to be asymptotically conformal.

Theorem 3.10. (See [29, Thm. 11.1]) Let f be a conformal map from D onto a domain
bounded by a Jordan curve γ. The following are equivalent:

(AC1) γ is asymptotically conformal;
(AC2) lim|ζ|→1−

f ′′(ζ)
f ′(ζ) (1− |ζ|2) = 0;

(AC3) lim|ζ|→1−‖S (f)‖D(ζ) = 0.

From now on, we will assume that the boundary of Ω is asymptotically conformal and
use a few classical results from geometric function theory.

Example 3.11. Weil–Petersson quasicircles satisfy AC3 (see [39, Corollary II.1.4]) and
are therefore asymptotically conformal.

The following is a simple consequence of the Koebe 1/4 theorem.

Theorem 3.12. (See [29, Cor. 1.4]) Let γ be a Jordan curve bounding Ω and ρΩ the
hyperbolic metric on Ω. Then

1
2d(z, γ) ≤

√
ρΩ(z) ≤ 2

d(z, γ)

where d(·, ·) denotes the Euclidean distance in R2.

Using this we obtain the following control over the behavior of the Epstein map.

Corollary 3.13. Let γ be a Jordan curve bounding Ω. Then EpΩ extends continuously
to the identity on γ with

(
√

5− 2)d(z, γ) ≤ d(EpΩ(z), γ) ≤ 5d(z, γ)

where d(·, ·) denotes the Euclidean distance in R3. Furthermore if EpΩ(z) = (Z(z), ξ(z)) ∈
C× R+, then

1
5d(z, γ) ≤ ξ(z) ≤ 4d(z, γ).

Proof. Let s = d(z, γ). Since EpΩ(z) is on the boundary of a horosphere of Euclidean
radius r = 1/

√
ρ(z) based at z by Remark 3.8, Theorem 3.12 shows that

s/2 ≤ r ≤ 2s.

We let zi → z ∈ γ. Then

d(EpΩ(zi), z) ≤ 2r + d(zi, z) ≤ 4d(zi, γ) + d(zi, z) ≤ 5d(zi, z).

Therefore EpΩ(zi)→ z giving EpΩ extends continuously to the identity on γ.
By the triangle inequality we also have√

s2 + r2 − r ≤ d(EpΩ(z), γ) ≤ 2r + s.

16



Thus
(
√

5− 2)s ≤ d(EpΩ(z), γ) ≤ 5s.

To bound ξ, let z0 ∈ Ω and f : D→ Ω a uniformizing map with f(0) = z0. Further by
post-composition by a translation, it suffices to consider z0 = 0. Thus the osculating
Möbius map M of f at 0 (i.e. the Möbius map with the same 2-jet at 0) is

M(ζ) = αζ

βζ + 1/α

where α2 = f ′(0) and 2αβ = −f ′′(0)/f ′(0). By Lemma 3.9 we have

EpΩ ◦f(0) = M(j) = αj(βj + 1/α)−1 = αβ + j

|β|2 + 1
|α|2

.

Thus
ξ(z0) = |α|2

|αβ|2 + 1 = |f ′(0)|

1 +
∣∣∣ f ′′(0)
2f ′(0)

∣∣∣2 . (3.5)

As f is univalent, by the Bieberbach theorem (see [3]) then |f ′′(0)| ≤ 4|f ′(0)|. We also
know that 1/r2 = ρ(z0) = 4/|f ′(0)|2. Thus we have |f ′(0)| = 2r and

s

5 ≤
2r
5 = |f

′(0)|
5 ≤ ξ(z0) ≤ |f ′(0)| = 2r ≤ 4s.

The result follows.

Corollary 3.14. If Ω is bounded by an asymptotically conformal curve γ then EpΩ is
an immersion and embedding in a neighborhood of ∂Ω.

Proof. We note that ‖S (f−1)(f(ζ))‖Ω = ‖S (f)(ζ)‖D. Since γ is asymptotically con-
formal, Theorem 3.5 and (AC3) imply that EpΩ is an immersion in a neighborhood of
∂Ω.
By Corollary 3.13 EpΩ extends to the identity on ∂Ω. If EpΩ is not an embedding in
a neighborhood of ∂Ω then there exists sequences xi → u, yi → v with xi 6= yi but
EpΩ(xi) = EpΩ(yi) and u, v ∈ ∂Ω. Then we have u = v.
We now obtain our contradiction to EpΩ(xi) = EpΩ(yi) for all i. We let Aδ := {f(ζ) ∈
Ω: 1− |ζ| < δ}. Given any ε > 0 we can choose δ such that ‖S (f−1)‖ < ε on Aδ. For
sufficiently large i we have that the geodesic arc γi joining xi to yi is in Aδ. Further for
any fixed r0 > 0, for sufficiently large i the r0−neighborhood of the geodesic arc γi is in
Aδ. Therefore as ‖S (f−1)‖ < ε on Aδ by [9, Lemma 3.5], then for r0 ≤ 1/2 the curve
EpΩ ◦γi has geodesic curvature less than κ = 3ε

2r0(1−ε)2 in H3. A standard fact about
hyperbolic space is that any smooth curve with geodesic curvature bounded above by 1
is embedded (see, for example [9, Lemma 3.6]). It follows that by choosing ε, r0 such
that κ ≤ 1 then EpΩ(xi) 6= EpΩ(yi), a contradiction.
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3.3 Explicit expression of Epstein maps in the upper-space model

For concreteness, we also mention that in the upper-space model, Epstein maps have
explicit expressions as derived in [15,22]. We collect them here for the readers’ conve-
nience. We choose to include the simple derivations or examples to be specific about our
conventions which is slightly different from [22] as we mentioned before.
Let ρ = eϕ|dz|2 be a smooth conformal metric on an open set U ⊂ C. The Epstein map
Epρ : z ∈ U 7→ (Z, ξ) ∈ C× R+ = H3 is given explicitly by

ξ = 2e−ϕ/2
1 + |ϕz|2e−ϕ

, Z = z + 2ϕze−ϕ
1 + |ϕz|2e−ϕ

= z + ξ · ψ, (3.6)

where
ψ := ϕz̄e

−ϕ/2, ϕz = ∂z̄ϕ.

The Epstein Gauss map is Ẽpρ : U ⊂ C→ T1H3 such that the base point is Epρ and the
vector component is ξ−→η where

−→η =
(

2ϕz̄e−ϕ/2
1 + |ϕz|2e−ϕ

,
1− |ϕz|2e−ϕ
1 + |ϕz|2e−ϕ

)
=
(

2ψ
1 + |ψ|2 ,

1− |ψ|2
1 + |ψ|2

)
(3.7)

is a Euclidean normal vector. It is straightforward to check that the geodesic flow
gt(Ẽpρ(z)) ∈ T1H3 satisfies

g−t(Ẽpρ(z)) = Ẽpe2tρ(z),

and the base point of g−t(Ẽpρ(z)) tends to z as t→∞.

Example 3.15. • If ϕ ≡ 2t, then for all z,

Epϕ(z) = (z, 2e−t) −→η = (0, 1).

• If eϕ = 4
(1+|z|2)2 , then for all z ∈ C, (Z, ξ) = (0, 1).

• If ϕ = log 4− 2 log(1− |z|2), i.e., ρ = eϕ|dz|2 is the hyperbolic metric in D, then
for z = reiθ ∈ D,

Epρ(reiθ) =
(

2r
1 + r2 e

iθ,
1− r2

1 + r2

)
= −→η .

This is consistent with Lemma 3.7 (and one of the advantage of choosing this
convention is) that the Epstein–Poincaré map Epρ maps D onto the totally
geodesic plane in H3 bounded by ∂D.

More generally, we have the following explicit formula for the Epstein–Poincaré map
associated with a simply connected domain Ω.
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Lemma 3.16. Let f : D → Ω be a conformal map and EpΩ : Ω → ΣΩ the Epstein–
Poincaré map. For z = f(ζ), ζ ∈ D, we have

ψ(z) = ϕze
−ϕ/2 = |f

′(ζ)|
f ′(ζ)

(
−f
′′(ζ)
f ′(ζ)

(1− |ζ|2)
2 + ζ

)
,

e−ϕ(z)/2 = 1
2 |f
′(ζ)|(1− |ζ|2)

ξ(z) = 2e−ϕ/2
1 + |ψ|2 = |f ′(ζ)|(1− |ζ|2)

1 +
∣∣− f ′′(ζ)

f ′(ζ)
(1−|ζ|2)

2 + ζ
∣∣2 ,

Z(z) = z + ξ · ψ = f(ζ) +

(
−f ′′(ζ)
f ′(ζ)

(1−|ζ|2)
2 + ζ

)
f ′(ζ)(1− |ζ|2)

1 +
∣∣− f ′′(ζ)

f ′(ζ)
(1−|ζ|2)

2 + ζ
∣∣2 .

We verify from the explicit formulas that the expression of EpΩ(f(0)) coincides with the
one in (3.5) and that the Epstein map EpΩ extends continuously to γ as the identity
map using the bounds∣∣∣∣∣(1− |ζ|2)

2
f ′′(ζ)
f ′(ζ) − ζ̄

∣∣∣∣∣ ≤ 2, (1− |ζ|2)
∣∣f ′(ζ)

∣∣ ≤ 4 dist(f(ζ), γ). (3.8)

See [29, Prop. 1.2, Cor. 1.4].

4 Renormalized volume for a Jordan curve

In this section, let γ ⊂ Ĉ be a Jordan curve and Ω, Ω∗ be the connected component of
Ĉ r γ. Let EpΩ (resp. EpΩ∗) be the Epstein–Poincaré map associated with Ω (resp, Ω∗).
We write as before ΣΩ and ΣΩ∗ for their images.

4.1 Disjoint Epstein–Poincaré surfaces

When γ is a circle, both Epstein surfaces coincide with the geodesic plane bounded by
γ by Lemma 3.7. We now show that in all other cases, the two Epstein surfaces of a
Jordan curve are disjoint. We need the following special case of Grunsky’s inequality,
see, e.g., [28, Thm. 4.1, (21)] for the proof.

Lemma 4.1 (Consequence of Grunsky inequality). Suppose that f : D → C and
g : D∗ → Ĉ are univalent functions on D and D∗ such that f(0) = 0 and g(∞) =∞, and
f(D) ∩ g(D∗) = ∅. Then we have

∫
D

∣∣∣∣f ′(z)f(z) −
1
z

∣∣∣∣2 d2z +
∫
D∗

∣∣∣∣g′(z)g(z) −
1
z

∣∣∣∣2 d2z ≤ 2π log
∣∣∣∣g′(∞)
f ′(0)

∣∣∣∣
where g′(∞) = limz→∞ g

′(z). Equality holds if C r {f(D) ∪ g(D∗)} has zero Lebesgue
measure.

Applying this we obtain the following result.
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Proposition 4.2. If γ is not a circle, then ΣΩ and ΣΩ∗ are disjoint.

Proof. We consider f : D → Ω and g : D∗ → Ω∗ univalent maps. We show that
for z ∈ D, w ∈ D∗ the horospheres at f(z), g(w) associated with the metrics ρΩ and
ρΩ∗ respectively are disjoint. By pre-composition and post-composition by Möbius
transformations we can assume z = 0, w =∞ and f(0) = 0, g(∞) =∞. By Remark 3.8,
the Euclidean diameter of the horosphere at f(0) = 0 is |f ′(0)| and the horosphere at
g(∞) = ∞ is the plane at Euclidean height |g′(∞)| (this can be seen by considering
the map z 7→ 1/g(1/z)). Thus they are disjoint if |g′(∞)| > |f ′(0)|. This follows from
Lemma 4.1 above.

4.2 Volume between the Epstein–Poincaré surfaces

Let γ ⊂ Ĉ be an asymptotically conformal Jordan curve. We now define the volume
between ΣΩ and ΣΩ∗ . Without loss of generality, we assume that γ does not contain
∞ ∈ Ĉ and use the upper half-space model of H3. We cautiously note that both Epstein–
Poincaré surfaces are non-compact and may not be embedded everywhere. For this
reason we use an approximation to compute the volume. For ε > 0, let

volε = 1ξ≥ε
voleucl
ξ3

where voleucl is the Euclidean volume form.
Let ϕγ be a continuous map H3 → H3, such that ϕγ |Ω = EpΩ, ϕγ |Ω∗ = EpΩ∗ , and ϕγ |H3

is differentiable. This is possible since EpΩ and EpΩ∗ extend to the identity map on γ.
We define

V2(γ)(ε) :=
∫
H3
ϕ∗γ volε .

This is the signed volume between the Epstein surfaces bounded by γ above level ε.
Since the boundary values of ϕγ are determined and ϕγ(H3)∩{(Z, ξ) : ξ ≥ ε} is compact,
we have V2(γ)(ε) is finite and independent of the choice of ϕγ . Since both Epstein surfaces
are disjoint (unless γ is a circle) by Proposition 4.2 and embedded near the boundary by
Corollary 3.14, without loss of generality, we assume further more that the Jacobian of
ϕγ is positive in a neighborhood Uγ of γ in H3. (If γ is a circle, then we choose ϕγ such
that the Jacobian is zero.) The limit

V (γ) := lim
ε→0+

V2(γ)(ε) ∈ (−∞,∞] (4.1)

exists since
∫
Uγ
ϕ∗γ volε increases as ε → 0+ and

∫
H3rUγ ϕ

∗
γ volε is constant for small

enough ε. The monotonicity and (3.1) also show that the limit is invariant under actions
of elements in PSL2(C) which do not send any point of γ to ∞ ∈ Ĉ.

Definition 4.3. For an asymptotically conformal Jordan curve γ ⊂ Ĉ, we define the
signed volume between the Epstein–Poincaré surfaces V (γ) to be the limit in (4.1) applied
to the curve A(γ), where A is any element in PSL2(C) such that A(γ) does not passes
through ∞.

The above definition is clearly PSL2(C)-invariant.
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4.3 Volume for smooth Jordan curves

In this subsection we will see if the Jordan curve γ is sufficiently smooth, then the map
EpΩ extends not only continuously to γ but also osculates to the totally geodesic plane
bounded by the circle osculating to γ in C. This will be useful later to prove that the
volume between EpΩ and EpΩ∗ is finite, if γ is sufficiently smooth.
If γ is C4,α for some 0 < α < 1, Kellogg’s theorem (see, e.g., [16, Thm. II.4.3]) implies
that the conformal map f : D→ Ω extends to a C4,α homeomorphism D→ Ω. Hence
by Lemma 3.16 the Epstein map EpΩ extends to ∂Ω as a C2,α map. We define the
osculating circle Cγ(θ) at γ(eit) to be the circle tangent to γ at γ(eit) and with the same
curvature as γ at γ(eit). We then define he osculating plane Pγ(θ) to be the geodesic
plane in H3 so that the boundary of Pγ(θ) is Cγ(θ).

Proposition 4.4. Let γ be a C4,α Jordan curve in C for some 0 < α < 1. Then EpΩ
and Pγ(θ), viewed as surfaces in R3, are tangent at (γ(eit), 0) and agree up to second
order.

Proof. We pick a point z0 = x0 + iy0 ∈ γ = ∂Ω. By post-composing by a Möbius
transformation, we can assume that z0 = 0. Let f : H→ Ω be a conformal map, where
H = {ζ = u+ iv : v > 0} denotes the half-plane. Without loss of generality, we assume
that f(0) = 0, f ′(0) = 1 and f ′′(0) = 0. Thus the plane bounded by the osculating circle
(which is the line {y = 0} ⊂ C) at z0 is the plane {y = 0} ⊂ C×R+ = {x+ iy+ jξ : ξ > 0}.
We now show that EpΩ(f(ζ)) = u + jv + O(|ζ|3) for |ζ| small, which would imply
EpΩ(x+ iy) = x+ jy +O(|x+ iy|3) and thus the statement follows.
We take ζ = u + iv ∈ H. We let gζ : D → Ω uniformize Ω with gζ(0) = f(ζ). The
osculating Möbius transformation Mζ for gζ at 0 is

Mζ(w) = f(ζ) + αw

βw + 1/α

with α2 = g′ζ(0) and 2αβ = −g′′ζ (0)/g′ζ(0). Then by Lemma 3.9 we have

EpΩ(f(ζ)) = Mζ(j) = f(ζ) + αβ + j

|β|2 + 1
|α|2

= f(ζ) + α2(αβ) + |α|2j
|αβ|2 + 1 .

We choose gζ = f ◦ ϕζ where ϕζ : D→ H is given by

ϕζ(w) = u+ iv

(1− w
1 + w

)
.

Thus as ϕζ(0) = ζ, ϕ′ζ(0) = −2iv, ϕ′′ζ (0) = 4iv,

α2 = g′ζ(0) = f ′(ζ)ϕ′ζ(0) = −2ivf ′(ζ) = −2iv +O(|ζ|3)
g′′ζ (0) = f ′(ζ)ϕ′′ζ (0) + f ′′(ζ)ϕ′ζ(0)2 = 4iv(f ′(ζ) + ivf ′′(ζ)) = 4iv +O(|ζ|3)

αβ = −
g′′ζ (0)
2g′ζ(0) = 1 + iv

f ′′(ζ)
f ′(ζ) = 1 +O(|ζ|2).

As f(ζ) = ζ +O(|ζ|3) then a straightforward computation shows

EpΩ(f(ζ)) = ζ + 1
2(−2iv + 2jv) +O(|ζ|3) = u+ jv +O(|ζ|3)
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as claimed.

Next we show that for sufficiently regular curves γ this volume is in fact finite.

Proposition 4.5. Let γ be a C5,α Jordan curve in C for some 0 < α < 1. Then V (γ)
is finite.

Proof. Without loss of generality, we assume that γ is parametrized by arc-length as a
function S1 → C. Take ϕγ some continuous map H3 → H3 as before, i.e., ϕγ |Ω = EpΩ,
ϕγ |Ω∗ = EpΩ∗ , and ϕγ |H3 is differentiable. We take the following C4,α parametrization
of a neighbourhood U of γ in H3, denoted G : S1

s ×H2(a,b) → H3, by

G(s, a, b) = γ(s) + iaγ′(s) + jb. (4.2)

It is a straightforward calculation to see that the hyperbolic metric in G-coordinates is
given by

(1− ak(s))2

b2
ds2 + 1

b2
da2 + 1

b2
db2,

where k(s) is the signed curvature of γ given by γ′′(s) = ik(s)γ′(s). Hence the volume
form is given by

(1− ak(s))
b3

ds da db.

If we assume that γ is C5,α, then the Epstein–Poincaré surfaces are C3,α up to the
boundary. This means that there are C3,α functions aΩ, aΩ∗ : S1

s × [0, ε0]b → R so
that the Epstein–Poincaré surfaces in the neighbourhood U of γ are parametrized by
G(s, aΩ(s, b), b), G(s, aΩ∗(s, b), b). And since by Proposition 4.4 the Epstein–Poincaré
surfaces agree up to second order at γ, then there exists a constant C > 0 so that
|aΩ(s, b)− aΩ∗(s, b)| ≤ Cb3.
Hence for small enough neighborhood U of γ, the integral

∫
U ϕ
∗
γ vol will be bounded by

V1(γ)(ε0) :=
∫
S1

∫ ε0

0

∫ aΩ∗ (s,z)

aΩ(s,z)

(1− ak(s))
b3

dadbds.

This integral is well-defined and convergent since

∣∣∣∣ ∫ aΩ∗ (s,b)

aΩ(s,b)

(1− ak(s))
b3

da
∣∣∣∣ = 1

b3

∣∣∣∣aΩ∗(s, b)− aΩ(s, b)
∣∣∣∣.∣∣∣∣(aΩ(s, b) + aΩ∗(s, b)

2

)
k(s)− 1

∣∣∣∣
is bounded by a constant independent of (s, b). Hence V (γ) = limε→0+ V2(γ)(ε) is a
finite real value.

Definition 4.6. Let γ be a Weil–Petersson quasicircle in C. Then we define VR(γ), the
renormalized volume of γ, as

VR(γ) := V (γ)− 1
2

∫
ΣΩ∪ΣΩ∗

Hda

= V (γ)− 1
2

∫
Ω
‖S (f−1)‖2(z)ρΩ(z)d2z − 1

2

∫
Ω∗
‖S (g−1)‖2(z)ρΩ∗(z)d2z.

(4.3)
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Remark 4.7. The second identity follows from Theorem 3.5. A priori, VR(γ) ∈ (−∞,∞]
as V (γ) ∈ (−∞,∞] and the integrals of mean curvature are finite by Corollary 3.6.
Proposition 4.5 shows that if γ is C5,α, then VR(γ) <∞. From the PSL2(C)-invariance
of each summand in (4.3) we can easily see that VR is PSL2(C)-invariant.

5 Universal Liouville action as renormalized volume

Our objective in this section is to prove that the renormalized volume in Definition 4.6
agrees up to a constant with the Loewner energy for C5,α curves.

5.1 Schläfli formula for the variation of the volume

We say that (γt)t∈[0,1] is a Ck,α family of Jordan curves in C for some k ≥ 1, 0 < α < 1,
if γt is Ck,α for all t ∈ [0, 1], and we can choose the conformal maps ft : D→ Ωt to be
jointly Ck,α for (t, z) ∈ [0, 1]× D and gt : D∗ → Ω∗t to be Ck,α for (t, z) ∈ [0, 1]× D∗.

Example 5.1. Let γ = γ1 be a Ck,α Jordan curve in C for some k ≥ 1, 0 < α < 1, and
D be a small round disk in Ω and A = Ω rD. Then there is 0 < r < 1 such that the
round annulus Ar = {z ∈ C | r < |z| < 1} is conformally equivalent to A (sending S1 onto
γ and rS1 onto ∂D). It is easy to see using Kellogg’s theorem that any conformal map
F : Ar → A is Ck,α on Ar. The family of Jordan curves (γt = F ((r + t(1− r))S1))t∈[0,1]
is a Ck,α family of Jordan curves. This can be seen using [31].

Theorem 5.2. Let (γt)t∈[0,1] be a C5,α family of Jordan curves for some 0 < α < 1.
Then the first derivative of the volume V (γt) is computed by

∂

∂t

∣∣∣∣
t=0

V (γt) =
∫

Ω
Ep∗Ω

(
δH + 1

4 〈δI, II〉 da
)

+
∫

Ω∗
Ep∗Ω∗

(
δH + 1

4 〈δI, II〉 da
)

where EpΩ,EpΩ∗ are the Epstein–Poincaré maps of Ω,Ω∗ (respectively); I, II, H,da are
the metric, second fundamental form, mean curvature and area form on ΣΩ and ΣΩ∗;
and δ denotes first order variation.

The proof of this theorem when the Epstein–Poincaré surfaces are immersions everywhere
is completed in Theorem 5.7. We postpone the proof of the non-immersed case to
Section 8.
In order to prove this, we will decompose the region between the Epstein surfaces into
two subregions and analyse the variation on both. This will require us to use a Schläfli
formula — the key ingredient — for the variation of regions with piecewise smooth
boundary.
We consider F : B→ H3 a parametrization of a region R by the closed unit 3-ball B such
that F is an immersion in B and the boundary map E : Ĉ→ H3 is piecewise smooth. We
let V be the hyperbolic volume of R defined as

∫
B F
∗ volhyp. For our purposes, we can

assume that E is piecewise smooth on two disjoint smooth simply connected domains
Ω,Ω∗ and the annulus A between them. Further wherever E is an immersion we let B
be the pullback of the shape operator by E. Now we consider a smooth variation of E by
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maps Ft, Et with the same decomposition of Ĉ and let ξ = ∂tEt|t=0 be the vector field
on ∂R describing this variation.
We have the following version of Schläfli.

Theorem 5.3 (See [36, Thm4]). Let Ft, Et be variations of F,E as above such that E
is an immersion on Ω,Ω∗, and A. Then the variation of volume satisfies

2∂tV |t=0 =
∫

Ω∪Ω∗∪A
tr 〈∇ξ(B·), DE·〉E∗da+

(∫
∂Ω

∂θ

∂t
E∗d`+

∫
∂Ω∗

∂θ∗

∂t
E∗d`

)
where tr denotes the trace of a 2-tensor with respect to the induced metric, da denotes
the induced area form, θ is the exterior dihedral angle between the regions Ω, A, θ∗ is the
exterior dihedral angle between the regions Ω∗, A, and d` is the length measure of ∂Ω.

The referenced variational formula in [36] differs from the above in the first term on the
right-hand side. We obtain our formula above using the following lemma.

Lemma 5.4 (See [36, Eq. (3.1) and Prop. 5]). At points where E is an immersion, the
form 1

2 tr 〈∇ξ(B·), DE·〉E∗da agrees with the pullback by E of the form (δH+ 1
4 〈δI, II〉) da.

We now describe the decomposition we will use for C5,α curves.

5.2 Decomposition

We consider a C5,α family (γt)t∈[0,1] of Jordan curves (α > 0). We will define a parametriza-
tion of the Epstein surfaces that allows us to compute the derivative ∂

∂t |t=0V (γt). Since
scalar multiplications are isometries of H3, we can assume without loss of generality
that all curves γt have Euclidean arclength 2π. Furthermore, for small ε we have that
V (γt) = V1(γt)(ε) +V2(γt)(ε), where V2 is defined in Section 4.2. Moreover, we also know
that V2(γt)(ε) ε→0−−−→ V (γt) converges uniformly in t by the proof of Proposition 4.5.
Let ft : D→ Ωt, gt : D∗ → Ω∗t be univalent functions that extend to Ck,α functions on
[0, 1]×D and [0, 1]×D∗ respectively. Consider ε sufficiently small so that for z ∈ D with
|z| > 1 − ε we have that EpΩt(ft(z)) belongs to the parametrized neighbourhood Uγt
from Proposition 4.5 for all t ∈ [0, 1]. Take the horizontal line Lt,z (horocycle centered
at ∞ ∈ Ĉ) obtained by varying the second G-coordinate (4.2) in Uγt starting from
EpΩt(ft(z)), and define ht(z) ∈ D∗ to be the point such that EpΩ∗t (gt(ht(z))) is the first
point of intersection of the horizontal line with EpΩ∗t . See Figure 1 for an illustration.
Clearly along ∂D the map ht agrees with g−1

t ◦ ft, and from the regularity of ft, gt and
the G-coordinates of Uγt we can see that the 1-parameter family of functions ht is C3,α

in 1− ε < |z| ≤ 1 and t-parameters. Moreover, ht is a diffeomorphism.
For 1− ε < r < 1, define the cylindrical neighbourhood of γ0 as

A(r) = f0({r ≤ |z| ≤ 1}) ∪ g0(h0({r ≤ |z| ≤ 1})),

which we parametrize by S1 × [r, 1/r], sending (p, s) to f0(sp) if s ≤ 1 and sending (p, s)
to g0(h0(ps )) if s ≥ 1. These cylindrical neighbourhoods are nested as r grows, and their
intersection as r → 1− is γ0. Define as well Ω(r),Ω∗(r) to be the components of CrA(r)
in Ω0 and Ω∗0, respectively.
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D

D∗

H3

Ωt
Ω∗

t

ft

gt

(1− ε)S1

ht(z)

z

ft(z)

EpΩt
(ft(z))

gt(ht(z))

EpΩ∗
t
(gt(ht(z)))

Lt,z

Figure 1: Illustration of the two Epstein–Poincaré surfaces associated with the two
connected component of Ĉ r γt and the map ht.

Define a 1-parameter family of homeomorphisms Ft : Ĉ→ Ĉ so that for z ∈ Ω0 we define
Ft(z) := ft(f−1

0 (z)), for z ∈ g0(h0({1−ε < |z| ≤ 1})) we define Ft(z) = gt◦ht◦h−1
0 ◦g

−1
0 (z).

In this way, if EpΩ0(u) and EpΩ∗0(v) are connected by the line L0,z (namely, u = f0(z)
and v = g0 ◦ h0(z)), then EpΩt(Ft(u)) and EpΩ∗t (Ft(v)) are connected by the line Lt,z.
We extend Ft to the rest of Ω∗0 as a C3,α map in both Ω∗0 and t parameters. Let us also
fix F0 to be the identity. It follows then that Ft|Ω0 is a conformal map between Ω0 and
Ωt, and Ft|γ0 parametrizes γt. For 1− ε < r < 1, we construct the family of piecewise
smooth maps Er,t : Ĉ→ H3 satisfying the following properties:

(C1) In Ω(r),Ω∗(r) the map Er,t is defined as the composition of the Epstein–Poincaré
maps EpΩt ,EpΩ∗t with Ft.

(C2) Considering the parametrization of A(r), for each p ∈ S1 we have that Er,t({p}×
[r, 1/r]) is the straight horizontal segment Lt,rp.

The map Er,·(·) is piecewise smooth, and it is C3,α while restricted to [0, 1]×Ω(r), [0, 1]×
A(r), [0, 1]× Ω∗(r).

Lemma 5.5. Along each Ω(r), A(r),Ω∗(r), on the image of Er,t(p) there is a well-
defined unit vector ~n that is normal to the image of DEr,t. On Ω(r) and Ω∗(r), ~n
coincides with ẼpΩt and ẼpΩ∗t respectively and on A(r), we choose ~n to have positive
vertical component. The corresponding Euclidean unit vector ~η varies piecewise C3,α

on {(r, t, p) | r ∈ (1 − ε, 1], t ∈ [0, 1], p ∈ Ω(r) or A(r) or Ω∗(r)}, and when r = 1,
p ∈ A(r) = γ, ~η ≡ (0, 0, 1).

Proof. The regularity of ~n on Ω(r),Ω∗(r) follows from the construction of the Epstein–
Poincaré map, see (3.7). The regularity of ~n in A(r) for 1− ε < r < 1 can be seen using
the G-coordinates parametrizing ΣΩt and ΣΩ∗t .
To obtain the regularity of the Euclidean unit vector ~η on A(r) up to r = 1 and its value
(0, 0, 1), we use the G-coordinates and the expression of ξ in Lemma 3.16.

Remark 5.6. When appropriate, we will simplify notation by dropping r, t sub-indices.
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5.3 Proof of Schläfli formula

We first prove Theorem 5.2 under the added assumption that the Poincare-Epstein
surfaces are immersions.

Theorem 5.7. Let γt be a C5,α family of Jordan curves (α > 0) such that the Poincare-
Epstein surfaces are immersions. Then the first derivative of the volume V (γt) is computed
by

∂

∂t

∣∣∣∣
t=0

V (γt) =
∫

Ω
Ep∗Ω

(
δH + 1

4 〈δI, II〉da
)

+
∫

Ω∗
Ep∗Ω∗

(
δH + 1

4 〈δI, II〉 da
)
.

Remark 5.8. To remove the assumption of immersion and to prove Theorem 5.2
will require some technical analysis which we leave to a later section (see Section 8).
As by Theorem 3.5 the map EpΩ (respectively for EpΩ∗) is an immersion in {z ∈
Ω | ‖S (f−1)(z)‖Ω 6= 1}, in particular we will extend continuously the right-hand side
of the formula in Theorem 5.2 to the locus {z ∈ Ω | ‖S (f−1)(z)‖Ω = 1} as smooth
differential forms so the variation of volume formula still holds.

Proof. For r close to 1 we define V2(r, t) as the volume bounded by Er,t. Similarly, we
define V1(r, t) as the volume of the region between ΣΩ,ΣΩ∗ outside of Er,t. Then we
have that V (γt) = V1(r, t) + V2(r, t).
We first show that

lim
r→1−

∂

∂t

∣∣∣∣
t=0

V2(r, t) =
∫

Ω
Ep∗Ω

(
δH + 1

4 〈δI, II〉 da
)

+
∫

Ω∗
Ep∗Ω∗

(
δH + 1

4 〈δI, II〉 da
)
.

Combining Theorem 5.3 and Lemma 5.4, we only need to prove that

lim
r→1−

∫
A(r)

1
2 tr 〈∇ξ(B·), DEp·〉 = 0 and

lim
r→1−

1
2

(∫
∂Ω(r)

∂θ

∂t
E∗d`+

∫
∂Ω∗(r)

∂θ∗

∂t
E∗d`

)
= 0.

For the first term, observe that A(r) belongs to the surface described in (C2). These
families of surfaces can be described by

{p ∈ S1, s ∈ [r, 1/r], r ∈ (1− ε, 1], t ∈ [0, 1]} → H3 ⊂ R3

(p, s, r, t) 7→ (x(p, s, r, t), y(p, s, r, t), z(p, s, r, t)),

where p, s parametrize the surface as in (C2) for γt. This parametrization extends C3,α

for r = 1 towards the boundary of H3 by making z(p, s, 1, t) ≡ 0. Moreover, given (C1)
and Lemma 3.16 we have that z(p, s, r, t) = O(1− r) uniformly for all other parameters.
Hence the first and second fundamental form (as well as their first order variations)
are of order at most (1− r)−2, and the inverse of the first fundamental form has order
(1− r)2. This follows from the expression of these fundamental forms in terms of the
derivatives up to third order of the parametrization into R3 and the conformal factor
z(p, s, r, t) = O(1−r). Thus it follows that the termsH, δH, 〈δI, II〉 are uniformly bounded.
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As by Proposition 4.4 Er,t(A(r)) has euclidean area O((1− r)3) so the hyperbolic area
of Er,t(A(r)) is of order O(1− r), we have that

lim
r→1−

∫
A(r)

1
2 tr 〈∇ξ(B·), DEp·〉 = 0.

Likewise, the exterior dihedral angle θ that takes each (p, r, t) to the angle between
Er,t(Ω(r)) andEr,t(A(r)) at (x(p, r, r, t), y(p, r, r, t), z(p, r, r, t)) =: γr(p), extends smoothly
to r = 1 as right angles. Similarly for θ∗ the exterior dihedral angle between Er,t(Ω∗(r))
and Er,t(A(r)) along γ∗r , where γ∗r (p) := (x(p, 1/r, r, t), y(p, 1/r, r, t), z(p, 1/r, r, t)). We
use again that the Epstein–Poincaré surfaces agree up to second order (Proposition 4.4)
to use parametrizations γr(p) and γ∗r (p) satisfying∥∥∥∥dγr

dp (p)− dγ∗r
dp (p)

∥∥∥∥ ≤ C(1− r)2

∣∣∣∣dθ(p)dt + dθ∗(p)
dt

∣∣∣∣ ≤ C(1− r)2
(5.1)

for some uniform constant C > 0. Then since the last coordinate of γr and γ∗r is O(1− r),
we have that for some uniform constant C > 0∣∣∣∣ ∫

dΩ(r)

dθ
dt E

∗d`+
∫

dΩ∗(r)

dθ∗
dt E

∗d`
∣∣∣∣

≤ C
∫
S1

∣∣∣∣ 1
1− r

dθ(γr(p))
dt

∣∣∣∣.∥∥∥∥dγr
dp

∥∥∥∥+
∣∣∣∣ 1
1− r .

dθ∗(γ∗r (p))
dt

∣∣∣∣.∥∥∥∥dγ∗r
dp

∥∥∥∥dp
≤ 1

1− r

∫
S1

∣∣∣∣dθ(γr(p))dt

∣∣∣∣.∥∥∥∥dγr
dp (p)− dγ∗r

dp (p)
∥∥∥∥+

∣∣∣∣dθ(γr(p))dt + dθ∗(γ∗r (p))
dt

∣∣∣∣.∥∥∥∥dγ∗r
dp

∥∥∥∥dp
(5.2)

goes to 0 as r → 1− uniformly in t.
Using the parameters of Proposition 4.5, we can see that the t derivatives of the functions
aΩ, aΩ∗ in the proof of Proposition 4.5 agree as well up to order 2, so by the same
argument we have that limr→1− ∂tV1(r, 0) = 0.
As for any r near 1− we have that ∂tV (γt) = ∂tV1(r, t) + ∂tV2(r, t), we send r to 1 on
the right hand side to obtain the result.

5.4 Variation of mean curvature and Schläfli formula

The goal of this section is to prove the identity between the renormalized volume and
the universal Liouville action when the curve is regular enough (Corollary 5.12).
The following result is proved by Krasnov–Schlenker, see [22, Cor. 6.2], for the renormal-
ized volume of convex co-compact manifolds. We adapt it to the renormalized volume
associated with a smooth Jordan curve using Theorem 5.2.

Theorem 5.9. We have the first order variation of the VR

δVR(γ) = −1
4

∫
Ω∪Ω∗

δĤ + 1
2
〈
δÎ, ÎI0

〉
da∗

where ÎI0 = ϑ dz2 + ϑ̄ dz̄2 is the traceless part of ÎI, 〈A,B〉 stands for tr[̂I−1AÎ−1B].
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Proof. By Definition 4.6, Remark 4.7 and Theorem 5.2, we can express δVR as the integral
of smooth 2-forms in Ω,Ω∗, so that at points where the respective Epstein–Poincaré
maps are immersions these forms are given by the pullback of the form

(δH + 1
4 〈δI, II〉) da− 1

2(δHda−Hδ(da))

by the respective Epstein–Poincaré map. Following [22, Section 6] this pullback is
expressed precisely as −1

4

(
δĤ + 1

2

〈
δÎ, ÎI0

〉)
dâ. As points where the Epstein–Poincaré

maps are immersions are dense in Ω,Ω∗, and by the piecewise regularity of E and of its
shape operator (Lemma 8.6) we have that all forms discussed vary continuously, we have
then that the result follows.

More explicitly, we can write the variation of VR in terms of the Beltrami differentials.
We consider a C5,α family of Jordan curves (γt) as in the previous section and let Ft
be the corresponding homeomorphism of Ĉ which maps Ω0 conformally onto Ωt and a
diffeomorphism from Ω∗0 to Ω∗t , as constructed in Section 5.2. For z /∈ γ0, let

µt := ∂z̄Ft
∂zFt

= tν̇ +O(t2).

We have in particular, Ḟ := d
dtFt|t=0 satisfies

∂z̄Ḟ = ν̇, Ft(z) = z + tḞ (z) +O(t2).

Since Ft is conformal in Ω0, ν̇|Ω0 ≡ 0.

Lemma 5.10. We have ‖ν̇‖∞ <∞. Moreover, ν̇|Ω∗ ∈ H−1,1(Ω∗)⊕N(Ω∗).

Proof. On Ω we have that the 1-parameter family Ft is conformal, while in Ω∗, Ft|Ω∗ is
jointly C3,α in (t, z). The L∞ bound of ν̇ follows from the compactness of the domains
(viewed in Ĉ).
For the second claim, as (γt) corresponds to a differentiable path in T0(1), the projection
of ν̇ onto harmonic Beltrami differentials Ω−1,1(Ω∗) parallel to N(Ω∗) lies in H−1,1(Ω∗).
This completes the proof.

Corollary 5.11. The first variation of the renormalized volume associated with the
family of deformed Jordan curves (γt := Ft(γ0)) is given by

δVR(γ) = −Re
∫

Ω∗
ν̇S [g−1]d2z. (5.3)

where we recall g : D∗ → Ω∗ is any conformal map.

Proof. As ν̇ ∈ L∞(Ω∗) and S [g−1] is continuous functions up to the boundary. The
integrals in (5.3) are absolutely convergent. From Theorem 5.9, we only need to check
the pointwise identity(1

4δĤ + 1
8
〈
δÎ, ÎI0

〉)
dâ = Re

(
ν̇S [g−1]

)
d2z (5.4)
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on Ω∗. For this, we have

dFt(z) = dz + t∂zḞ dz + t∂z̄Ḟ dz̄ +O(t2) = dz + t∂zḞ dz + tν̇ dz̄ +O(t2)

and in the dz, dz̄ coordinates

dFt(z)dFt(z) =
(

t¯̇ν 1
2(1 + 2tRe(∂zḞ ))

1
2(1 + 2tRe(∂zḞ )) tν̇

)
+O(t2).

Therefore, the hyperbolic metric in Ω∗t is

eϕ(1 + 2ts+O(t2)) dFt(z)dFt(z) = Î + teϕ
(

¯̇ν Re(∂zḞ ) + s

Re(∂zḞ ) + s ν̇

)
+O(t2).

where s is some smooth function on Ω∗ and

Î = eϕdzdz̄ = 1
2

(
0 eϕ

eϕ 0

)
.

We obtain
δÎ = eϕ

(
¯̇ν Re(∂zḞ ) + s

Re(∂zḞ ) + s ν̇

)
.

Recall that
ÎI0 =

(
ϑ 0
0 ϑ̄

)
=
(

S (g−1) 0
0 S (g−1)

)
,

we have 〈
δÎ, ÎI0

〉
= 8e−ϕ Re(ν̇S [g−1]).

Since dâ = eϕ d2z and from Corollary 3.4, we have Ĥ = −K̂ ≡ 1 which implies δĤ ≡ 0,
we obtain the claimed formula (5.4).

Corollary 5.12. We have for all C5,α Jordan curves γ, we have

S̃(γ) = 4VR(γ).

Proof. When γ is a circle, we have S̃(γ) = 0 and VR(γ) = 0 since both Epstein surfaces
are the geodesic plane bounded by γ.
Given a C5,α Jordan curve γ. We consider a C5,α family (γt)t∈[0,1] of Jordan curves
as in Example 5.1 such that γ0 = ∂D is a circle and γ1 = γ. The variational formula
Theorem 2.1 and Corollary 5.11 show that

S̃(γ) = 4VR(γ)

since S̃(γ0) = 4VR(γ0).
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5.5 Approximation of general Weil–Petersson quasicircle

The goal of the section is to prove the following theorem using an approximation.

Theorem 5.13. We have for any Weil–Petersson quasicircle γ,

S̃(γ) ≥ 4VR(γ).

Remark 5.14. We have already proved the equality when γ is a C5,α Jordan curve. We
also believe the equality holds for arbitrary Weil–Petersson quasicircle but are only able
to prove the inequality.

For the inequality, we will use the approximation using equipotential curves. Let γ be a
Weil–Petersson quasicircle, f : D→ Ω be a conformal map. Up to post-composing f by a
Möbius map, we may assume that f(0) = 0, f ′(0) = 1 and f ′′(0) = 0. The equipotentials

γn = fn(S1), where fn(z) := n

n− 1f
(
n− 1
n

z

)
form a family of analytic Jordan curves. The map fn satisfies the same normalization as
f at 0. We let Ω∗n := Ĉ r fn(D) (resp. Ω∗ := Ĉ r f(D)) and gn (resp. g) be an arbitrary
conformal map D∗ → Ω∗n (resp, D∗ → Ω∗). Apart from the analyticity, the family of
equipotentials is nice because of the following theorem.

Theorem 5.15 (See [40, Cor. 1.5]). Along the family of equipotentials the universal
Liouville action converges and is non-decreasing. We have

lim
n→∞

↑ S̃(γn) = S̃(γ).

If γ is not a circle, then S̃(γn+1) > S̃(γn).

Lemma 5.16. We have ∫
ΣΩn∪ΣΩ∗n

Hda n→∞−−−→
∫

ΣΩ∪ΣΩ∗
Hda. (5.5)

Proof. It follows from [39, Cor.A.4., Cor.A.6] that the element [µn] in T0(1) associated
with γn converges to [µ] which is associated with γ. In particular, [39, Chap. I, Thm. 2.13,
Thm. 3.1] implies that∫

D
‖S (fn)‖2D ρD d2z =

∫
D
|S (fn)|2ρ−1

D d2z
n→∞−−−→

∫
D
‖S (f)‖2D ρD d2z.

As T0(1) is a topological group, we have [µn]−1 converges to [µ]−1 which implies∫
D∗
‖S (gn)‖2D∗ ρD∗ d2z =

∫
D∗
|S (gn)|2ρ−1

D∗ d2z
n→∞−−−→

∫
D∗
‖S (g)‖2D∗ ρD∗ d2z.

The proof is completed using Theorem 3.5 and that ‖S (f−1)(f(ζ))‖Ω = ‖S (f)(ζ)‖D.

Lemma 5.17. Recall that V2(γ)(ε) denotes the signed volume between EpΩ and EpΩ∗

above Euclidean height ε. We have V2(γn)(ε) converges to V2(γ)(ε) for all ε > 0.
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Proof. For this, we denote for ε > 0,

Kε,n := {ζ ∈ D : ξn ◦ fn(ζ) ≥ ε}, Kε := {ζ ∈ D : ξ ◦ f(ζ) ≥ ε},

where (Zn, ξn) is the Epstein–Poincaré map on the domain Ωn = fn(D) following the
notations in Section 3.3.
By Corollary 3.13

dist(fn(ζ), γn)
5 ≤ |ξn ◦ fn(ζ)| ≤ 4 dist(fn(ζ), γn)

which implies for all ζ ∈ Kε,n,

dist(fn(ζ), γn) ≥ ε/4.

Since fn converges uniformly to f on D from the explicit expression, the derivatives of
fn converges to the derivatives of f uniformly on compact sets of D by Cauchy’s integral
formula.
Hence, there exists n0 such that for all n ≥ n0, we have

‖fn − f‖∞,D < ε/16.

This implies
dist(f(ζ), γ) ≥ ε/8 and ξ ◦ f(ζ) ≥ ε/40.

Summarizing, we have for all n ≥ n0,

Kε,n ⊂ Kε/40.

Since Kε/40 is a compact set in D independent of n, we have that all derivatives of
fn converge uniformly to the derivatives of f on Kε/40. As the Epstein–Poincaré map
only depends on f , f ′, and f ′′ (Theorem 3.2), EpΩn ◦fn converges uniformly to EpΩ ◦f
uniformly on Kε/40. Similarly argument applies to the Epstein–Poincaré maps EpΩ∗n ◦gn.
We obtain that V2(γn)(ε) converges to V2(γ)(ε).

We obtain the following corollary.

Corollary 5.18. If γ is a Weil–Petersson quasicircle, then

V (γ) ≤ 1
4 S̃(γ) + 1

2

∫
ΣΩ∪ΣΩ∗

Hda <∞.

Proof. For small enough ε > 0,

V2(γ)(ε) = lim
n→∞

V2(γn)(ε)

≤ lim
n→∞

1
4 S̃(γn) + 1

2

∫
ΣΩn∪ΣΩ∗n

Hda = 1
4 S̃(γ) + 1

2

∫
ΣΩ∪ΣΩ∗

Hda

by Theorem 5.15 and Lemma 5.16. We obtained the inequality by taking ε→ 0.

Theorem 5.13 follows immediately from this corollary.
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6 Gradient flow of the universal Liouville action

Following Bridgeman–Brock–Bromberg [7] and Bridgeman–Bromberg–Vargas-Pallete [10],
we introduce the following flow on T (1). For [µ] ∈ T (1), we have a natural isomorphism
T[µ]T (1) ' Ω−1,1(D∗). We therefore define the vector field

V[µ] := −4S (gµ)
ρD∗

∈ Ω−1,1(D∗),

where gµ is a conformal map defined on D∗ associated with [µ] as defined in Section 2.1.

Theorem 6.1. The vector field V has flowlines that exist for all time on T (1). The
flow restricts to a flow on T0(1) and is the (negative) Weil–Petersson gradient of the
Liouville functional S. Furthermore all flowlines on T0(1) converges to the origin [0]
which corresponds to the round circle.

Proof. By the Nehari bound we have that in the Teichmüller metric on T (1), ||V ||∞ ≤ 6.
Thus as T (1) is complete in the Teichmüller metric, the flow under V exists for all time
on T (1). If [µ] ∈ T0(1) then by the characterization (2.4) we have∫

D∗
|S (gµ)|2ρ−1

D∗ d2z <∞.

Thus V[µ] ∈ H−1,1(D∗) ' T[µ]T0(1) and therefore by integrability the flow preserves T0(1).
Furthermore if ν̇ ∈ H−1,1(D∗) ' T[µ]T0(1) then by Theorem 2.1,

(dS)[µ](ν̇) = 4 Re
∫
D∗
ν̇S (gµ) = −Re

∫
D∗
ν̇ V[µ] ρD∗ = −

〈
V[µ], ν̇

〉
WP

.

Therefore ∇WPS = −V and
dS(V ) = −||V ||2WP.

We consider the flowline R+ → T0(1) : t 7→ α(t) for V starting at a point [µ] = α(0) ∈
T0(1). Since S ≥ 0, for all T > 0,

0 ≤
∫ T

0
||V (α(t))||2WP dt = S([µ])− S(α(T )) ≤ S([µ]).

Thus ∫ ∞
0
||V (α(t))||2WP dt <∞.

We therefore have a sequence tn →∞ such that

lim
n→∞

||V (α(tn))||WP = 0.

Therefore the conformal maps gα(tn) satisfy ‖S (gα(tn))‖2 → 0. From the Hilbert manifold
structure of T0(1), see [39, Ch. I, Def. 2.11], this implies α(tn) converges in T0(1) to the
origin [0]. In particular, S(α(tn))→ 0.
To show that the flow line converges to [0] (not only along a subsequence), we note first
that the Liouville action of α(t) is decreasing which implies S(α(t))→ 0 as t→∞. We
now show that this implies the convergence of the flow line in T0(1) to the origin.
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In fact, assuming the opposite, there is ε > 0 and a sequence α(tk) such that the Weil–
Petersson distance to 0 is greater than ε along the sequence. Let γk be the quasicircle
passing through 1,−1,−i associated with α(tk) (see Section 2), since their Liouville
action is uniformly bounded, they are all K-quasicircles (see, e.g., [30, Prop. 2.9]) for
some K > 1 (namely, image of S1 of a K-quasiconformal homeomorphism ϕk of Ĉ fixing
1,−1,−i). We can extract from the normal family {ϕk} a subsequence ϕk(n) which
converges uniformly on S1 as n→∞. We write γ∞ for the image of S1 of the limiting
map limn→∞ ϕk(n). We have γk(n) converges uniformly to γ∞. From [30, Lem. 2.12], we
know the Liouville action is lower-semicontinuous, this implies

0 = lim inf
n→∞

S(αtk(n)) = lim inf
n→∞

S̃(γk(n)) ≥ S̃(γ∞). (6.1)

Hence S̃(γ∞) = 0. As S1 is the only zero of S̃, we have γ∞ = S1 and the corresponding
point in T0(1) is the origin 0. To see αtk(n) also converges in T0(1), consider the conformal
maps fn : D→ Dn fixing 0 and gn : D∗ → D∗n fixing ∞ as in the definition of S(αtk(n)),
where Dn and D∗n are respectively the bounded and unbounded connected component of
Cr γk(n). We have from (6.1) and Carathéodory theorem that

lim
n→∞

log
∣∣∣∣ f ′n(0)
g′n(∞)

∣∣∣∣ = 0, which implies lim
n→∞

∫
D

∣∣∣∣f ′′n(z)
f ′n(z)

∣∣∣∣2 d2z = 0.

This shows αtk(n) converges to 0 in T0(1) by [39, Cor.A.4] and contradicts with the
assumption of the sequence being ε distance away from 0.

Using the gradient flow we may bound the Weil–Petersson distance between [µ] and [0]
by the universal Liouville action. We first recall some results proved by Takhtajan and
Teo that we summarize in the lemma below.

Lemma 6.2 ( [39, Ch. I: Rem. 2.4, Lem. 2.5, Cor. 2.6]). There exists 0 < δ < 1 such
that for all µ ∈ Ω−1,1(D∗) with ‖µ‖∞ < δ,∣∣∣∣∣ |∂zwµ(z)|2

(1− |wµ(z)|2)2 −
1

(1− |z|2)2

∣∣∣∣∣ < 1
(1− |z|2)2 .

Moreover, for such µ, the map D0(β ◦ R[µ]) : H−1,1(D∗) → A2(D) is a bounded linear
isomorphism with

||D0(β ◦R[µ])(ν)||2 ≤ 24||ν||WP ||ν||WP ≤ K||D0(β ◦R[µ])(ν)||2

where K =
√

2/(1− δ)2.

Theorem 6.3. With the same constants δ andK as in Lemma 6.2. Let 0 < c < 2δ
√

4π/3,
then for [µ] ∈ T0(1), we have

c(distWP([µ], [0])−Kc) ≤ S([µ]). (6.2)

Proof. We let t 7→ α(t) be the gradient flow line starting at [µ]. Assume first that
‖V ([µ])‖ ≥ c and let τ be the first time ‖V (α(t))‖WP = c. Then ‖V (α(t))‖WP > c for
all t < τ . Thus

S([µ])− S(α(τ)) =
∫ τ

0
‖V (α(t))‖2WP dt ≥ c

∫ τ

0
‖V (α(t))‖WP dt ≥ c distWP([µ], α(τ)).

33



We have therefore

S([µ]) ≥ c(distWP([µ], [0])− distWP(α(τ), [0])).

By [39, Ch. I, Lem. 2.1], we have for all φ ∈ A∞(D),

||φ||∞ := sup
z∈D
‖φ(z)‖D ≤

√
3

4π

√∫
D
||φ(z)||2D ρD d2z =

√
3

4π ||φ||2. (6.3)

Hence, since ‖V (α(τ))‖ = c, we have

‖V (α(τ)))‖∞ ≤ c
√

3/4π < 2δ.

Therefore
‖β̂([α(τ)])‖∞ = ‖S (gα(τ))‖∞ < δ/2 < 1/2

where β̂ is the Bers embedding T (1)→ A∞(D∗). As β̂(T0(1)) = β̂(T (1)) ∩ A2(D∗) the
linear path

γ(s) := [sµ̃], where µ̃ = − 2
z̄4

S (gα(τ))
ρD∗

(1
z̄

)
satisfies ‖µ̃‖D,∞ < δ

for s ∈ [0, 1] from 0 to α(τ) is in the ball of radius δ of T (1), and also in T0(1) since by
Ahlfors–Weill theorem

β̂([sµ̃]) = sS (gα(τ)) ∈ A2(D∗).

In A2(D∗) this path has length ‖V (α(τ))‖WP = c. By Lemma 6.2 we have that the
preimage of this path by β̂ has therefore length less than Kc and obtain (6.2).
If ‖V ([µ])‖WP < c, then the above argument shows that distWP([µ], 0) ≤ Kc, so (6.2)
holds trivially as S ≥ 0.

7 Comparisons to minimal surfaces and convex core

Using Proposition 7.1 and Proposition 7.3 we will answer a question of Bishop [4] about
how minimal surfaces and convex cores relate to Epstein–Poincaré maps. This section is
independent from the proofs in the rest of the paper.
Let us extend the notation ΣΩ by taking ΣΩ(t) as the image of Epe2tρΩ for t ∈ R. The
following proposition shows that a minimal surface in H3 with boundary γ ⊂ C is in
between appropriate equidistant images ΣΩ(t),ΣΩ∗(t) (Cr γ = Ω ∪ Ω∗). We write

‖S (f−1)‖∞ := sup
z∈Ω
|S (f−1)(z)|ρ−1

Ω (z) = sup
ζ∈D
|S (f)(ζ)|ρ−1

D (ζ) = ‖S (f)‖∞.

Proposition 7.1. Let M ⊂ H3 be a minimal surface so that ∂∞M = γ. Denote by MΩ
the closure of the component of H3 rM with conformal boundary Ω. Given conformal
map f : D→ Ω, denote by t0 = 1

2 log (max{1, 2‖S (f)‖∞ − 1}). Then for any t ≥ t0 we
have that ΣΩ(t) ⊂MΩ.
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Proof. Recall that by the discussion at the start of Subsection 3.2, the principal curvatures
at infinity of ρΩ are bounded below by 1− 2‖S (f)‖∞. By taking any Ω′ ⊂ Ω bounded
by an equipotential, we have that the same lower bound 1− 2‖S (f)‖∞ holds for ρΩ′ .
We will start by showing that ΣΩ′(t) ⊂MΩ for any t ≥ t0.
Fixing Ω′ ⊂ Ω, define t′ = inf{t ∈ R |ΣΩ′(t) ⊂MΩ}. As we have ∂Ω′ ⊂ Ω, then t′ < +∞
and ΣΩ′(t′)∩M is a non-empty compact subset of H3. If we assume by contradiction that
t′ > t0 then e2t′ρΩ′ has principal curvatures at infinity bounded strictly below by −1. As
we have that the mean curvature at infinity Ĥ is the opposite of Gaussian curvature of
the metric (see Corollary 3.4), then the principal curvatures at infinity k̂1,2 of e2t′ρ satisfy
k̂1+k̂2

2 = e−2t′ < 1 at every point. This implies that the mean curvature vector of ΣΩ′(t′),
given by 1−k̂1k̂2

(1+k̂1)(1+k̂2) > 0 times the outer normal to the associated horosphere, is hence
positively parallel to the outer normal to the horosphere. This leads to a contradiction
as at the tangent point between ΣΩ′(t′) and M we will have that the mean curvature
vector points in the opposite direction by the relative position of ΣΩ′(t′) and M with
respect to the outer normal to the horosphere.
As we can obtain ΣΩ(t) as limits of ΣΩ′(t), the conclusion follows for Ω.

Remark 7.2. From Proposition 7.1 we have that if ‖S (f)‖∞, ‖S (g)‖∞ < 1 (where
f, g are uniformization maps for Ω,Ω∗) then the minimal surface M lies in between the
Epstein–Poincaré maps from Ω,Ω∗. This is an alternate proof of Proposition 4.2 under
the assumption ‖S (f)‖∞, ‖S (g)‖∞ < 1.

We can impose instead conditions on the curvatures of the minimal surface to obtain the
same conclusion as in Remark 7.2.

Proposition 7.3. Let M ⊂ H3 be a minimal surface so that ∂∞M = γ. Denote by MΩ
the closure of the component of H3 rM with conformal boundaries Ω. Assume that any
point of M the principal curvatures are strictly between −1 and 1. Then for any t ≥ 0
we have that ΣΩ(t) ⊂MΩ.

Proof. For z ∈ Ω define νM as the visual metric of M , given by the value of the visual
metric at z of the first horosphere Hz at z that intersects M (or equivalently, Hz = ∂Bz,
where Bz is the largest open horosphere based at z disjoint from M). As z /∈ ∂∞M we
have that νM is well-defined, and by the condition on mean curvatures we have that Hz

is tangent to M at a unique point. Indeed, Hz ∩M is an isolated set, and if it is not
a singleton then we would find an intrinsic geodesic segment of M that on its interior
belong to H3 rBz but its endpoints lie in Hz. Such curve will have an interior point of
geodesic curvature greater than 1, but as a geodesic segment of M its geodesic curvature
is always less than 1, which is a contradiction.
Using that the point of tangency of Hz and M is unique, one has that the Gaussian
curvature of νM at z is given by −1+λ2

1−λ2 ≤ −1, where ±λ are the principal curvatures of
M at the point of tangency. By the Ahlfors-Schwarz lemma we have that νM ≤ e2tρΩ
for any t ≥ 0, which in particular implies that ΣΩ(t) ⊂MΩ.

Finally, we observe that the Epstein–Poincaré map has image inside a neighbourhood of
the convex core.
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Proposition 7.4. Define ε = log (max{1, 2‖S (f)‖∞ − 1, 2‖S (g)‖∞ − 1}). Then ΣΩ,
ΣΩ∗ belong to Cε(γ), the ε neighbourhood of the convex core C(γ).

Proof. We start by proving the following claim.
Claim: Take t > ε

2 . For any round disk D ⊂ Ω we will show that ΣΩ(t) lies in the
component of H3 r ΣD(t) whose boundary at infinity contains γ.
Observe first that by Theorem 3.3 the curvatures at infinity of ΣΩ(t) are given by
e−2t(1± 2‖S (f)‖∞). Hence as t > ε

2 we have that the curvatures at infinity of ΣΩ(t) are
greater than −1 and therefore ΣΩ(t) is an immersed surface. Moreover as the principal
curvatures at infinity add up to e−2t < 1 we have that the surface ΣΩ(t) is mean-convex
with respect to the normal vector field given by ẼpΩ.
Define the (signed) distance function d : H3 → R to ΣD(t) so that d−1{s} = ΣD(s+ t).
Considering d ◦ ΣΩ, we define d0 = sup{d(ΣΩ(t)(z)) | z ∈ Ω}. The claim is equivalent to
show that d0 ≤ 0, so let us argue by contradiction and assume d0 > 0.
As γ lies in the exterior of D we have that for limz∈Ω, z→γ d(ΣΩ(t)(z)) = −∞, from which
it follows that d0 is realized at a point z0 ∈ Ω. Hence the normal vector to ΣΩ(t)(z0)
must be perpendicular to ΣΩ(d0 + t), since otherwise we can produce z1 close to z0 so
that d(z1) > d(z0). And as ΣD(d0 + t) is mean-convex with respect to ẼpΩ(t)(z0) and
d0 > 0, we have that ẼpΩ(t)(z0) extends to a geodesic orthogonal to ΣD(d0 + t) with
z0 as it backwards endpoint. But then at ΣΩ(t)(z0) = ΣD(d0 + t)(z0) (with respect
to ẼpΩ(t)(z0)) the surface ΣΩ(t) has a principal curvature ≤ tanh(t) while the surface
ΣD(d0 + t) has principal curvatures > tanh(t), which contradicts the definition of d0.
Hence the claim is proven.
The claim combined with Proposition 4.2 show that if t > ε

2 then ΣΩ(t) is contained in
Ct(γ). As ΣΩ(t) is obtained from ΣΩ by flowing distance t along the normal flow and
Ct(γ) is the t-neighbourhood of C(γ), then from ΣΩ(t) ⊆ Ct(γ) it follows that ΣΩ lies in
C2t(γ). The result now follows by taking t→ (ε/2)+.

Remark 7.5. As with Remark 7.2, we have that Proposition 7.4 shows that if we
have that ‖S (f)‖∞, ‖S (g)‖∞ < 1 then the Epstein–Poincaré map has image inside
the convex core. This is in contrast with the analogous result for convex co-compact
hyperbolic 3-manifolds, where the condition ‖S (f)‖∞, ‖S (g)‖∞ < 1 is not required.
This is because in the convex co-compact case we can take a point at infinity where
the conformal factor between the Poincaré and the Thurston metric is maximized (by
the co-compact action in the boundary) and show that such maximum is bounded by 1,
rather than argue with tangencies of surfaces as in the proof of Proposition 7.4.

Remark 7.6. While in Propositions 7.1, 7.3, 7.4 the restrictions on the norm of the
Schwarzian or the curvature are not necessarily sharp, some restriction is necessary. This
can be seen for instance in the following example. Denote by Ω0 the complement of the
real segment [0, 1] in Ĉ and by Ωn a sequence of domains bounded by equipotentials of
Ω0 so that Ωn

n→∞−−−→ Ω0. Since that the convex core of Ω0 is given by the half-plane
defined by the circular arc, it is easy to see that EpΩ0 pierces through the convex core.
As Ωn bound equipotentials of Ω0 and Ωn

n→∞−−−→ Ω0, one can verify that the stronger
conclusions from Propositions 7.1, 7.3, 7.4 do not follow for n sufficiently large.
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8 Extending variational formula to non-immersed case

The goal of this section is to extend the Schläfli formula to the case when the Poincaré–
Epstein surfaces are not immersions and prove Theorem 5.2. In order to do so, we will
need to generalize various parts of the proof of Schläfli found in [36].
Let us recall the setup in Section 5.2. Let (γt)t∈[0,1] be a C5,α family of Jordan curves
(α > 0). Let Ω(r), A(r),Ω∗(r) be the piecewise decomposition of Ĉ where we defined the
family of piecewise smooth maps Er,t : Ĉ→ H3. We define the unit normal vector field
~n using ẼpΩt and ẼpΩ∗t , and on A(r) we choose ~n to have positive vertical component as
in Lemma 5.5.
We first extends the notion of the shape operator.

Lemma 8.1. There is a piecewise C2,α family of linear maps Br,t(p) : R2 → ~n⊥(Er,t(p))
for {(r, t, p) | r ∈ (1 − ε, 1), t ∈ [0, 1], p ∈ Ω(r) or A(r) or Ω∗(r)}, so that at any point
where Er,t is an immersion, Br,t(p)v agrees with B(DpEr,t(v)), where B is the shape
operator of the image of Er,t.

Proof. For {z ∈ Ω | ‖S (f−1)(z)‖Ω 6= 1} ⊆ Ω (and analogously for Ω∗) and v ∈ R2, it
follows from elementary differential geometry that Br,t(p)v satisfies

Br,t(p)v = −
(
Di(p)~nj(p)Γki,j(p) + ∂~nk

∂v
(p)
)
ek(p), (8.1)

where we are using Einstein’s notation, e1(p), e2(p), e3(p) is the canonical base for TH3

at EpΩ(p), Γki,j its Christoffel symbols, ~n = ~niei are the coordinates of the normal vector
~n = ẼpΩ and Diei the coordinates of DEpΩ(v). As the right-hand side of (8.1) is
well-defined along {z ∈ Ω | ‖S (f−1)(z)‖Ω = 1}, we use (8.1) to define Br,t(p)v. Usually
the right-hand side of (8.1) is denoted by −D~n

dv , where
D~n
dv is the covariant derivative

of the vector field ~n along the parametrization EpΩ. By abuse of notation we will still
denote D~n

dv as ∇DpEv~n, even though this only holds if E is an immersion at p.
For the region A(r) we can define Br,t by observing that the map Er,t is the composition
of a smooth map into the horizontal lines described in step (C2). The union of these lines
are immersed for r sufficiently close to 1, and hence have a well-defined shape operator.
Hence we define Br,t as the pullback of such shape operator by Er,t. As Br,t is defined
as a pullback of a shape operator, it satisfies the analogous identity to (8.1).
It follows then by Lemma 5.5 that Br,t is piecewise C2,α in {(r, t, p) | r ∈ (1− ε, 1), t ∈
[0, 1], p ∈ Ω(r) or A(r) or Ω∗(r)}, and agrees with the pullback by Er,t of the shape
operator of the image of Er,t whenever Er,t is an immersion.

Remark 8.2. Observe that given that we are defining Br,t as a pullback along Ar, we
have that whenever Er,t is not immersed at a point of Ar, Br,t will be the 0 vector along
the non-immersed direction. This is quite different from the behavior at Ω(r),Ω∗(r). Er,t
is not immersed at points of Ω(r),Ω∗(r) where the curvatures at infinity are −1, since
the metric

I(X,Y ) = 1
4 Î
(
(id +B̂)X, (id +B̂)Y

)
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will vanish precisely at directions X (at infinity) whenever B̂X = −X. We note that
whenever B̂ does not have eigenvalue −1 then (id +B)(id +B̂) = 2 id. Therefore

I(BX,BY ) = 1
4 Î
(
(id +B̂)BX, (id +B̂)BY

)
= 1

4Î
(
(id−B̂)X, (id−B̂)Y

)
.

Hence for a given eigenvector X (‖X‖ρΩ = 1) with principal curvature k 6= −1 we see
that ‖BX‖H3 = |1−k|

2 , where this norm is given by the hyperbolic metric in H3. Hence
for k = −1 we have that ‖BX‖H3 = 1 is a unit vector.

Remark 8.3. When there is no ambiguity we will drop the subscripts r, t in Er,t to
simplify the notation.

The following generalizes the key formula to prove the differential Schlälfi formula
(see [36, Proposition 5]). Let ∂

∂t |t=0Er,t = ξ be the piecewisely defined vector field by the
first order variation on t, and let D

dt denote the covariant derivative of a vector field along
a curve in H3.

Proposition 8.4. For any p ∈ Ĉ = Ω(r) ∪A(r) ∪ Ω∗(r) and u, v ∈ R2 we have〈
D

dξ
(B(p)u), DpE(v)

〉
= −

〈
D

du

D

dξ
~n,DpE(v)

〉
+ 〈R(ξ,DpE(u))~n,DpE(v)〉 (8.2)

where we follow the convention R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z, and 〈·, ·〉
is the hyperbolic metric tensor in H3.

Proof. Recall that we have the equality (all evaluated at p and using the notation in
(8.1))

Bu = −D
du
~n

Differentiating along ξ and taking inner product with DE(v)〈
D

dξ
Bu,DE(v)

〉
= −

〈
D

dξ

D

du
~n,DE(v)

〉
= −

〈
D

du

D

dξ
~n,DE(v)

〉
+ 〈R(ξ,DE(u))~n,DE(v)〉 ,

(8.3)

where we are using the curvature tensor to exchange the order of derivations.

Remark 8.5. At points where E is an immersion, we can write 〈∇ξ(Bu), DE(v)〉 as

〈∇ξ(Bu), DE(v)〉 =
〈
B′(DE(u)), DE(v)

〉
+ 〈∇Buξ,DE(v)〉

which is the formula appearing in [36, Prop. 5], where B′ is the covariant derivative with
respect to t of B in the immersed surface image. At points where E is an immersion
(8.2) can be written as

〈∇ξ(B(p)u), DpE(v)〉 = −
〈
∇DpE(v)∇ξ~n,DpE(u)

〉
+ 〈R(ξ,DpE(u))~n,DpE(v)〉

given the identification between covariant derivatives and connections.
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We recall that da is the area form on the Epstein surface. We next extend the form〈
D
dξ (B·), DE(·)

〉
da to the non-immersed case.

Note that the trace of 〈R(ξ,DE(·))~n,DE(·)〉 is −2 〈ξ, ~n〉 at immersion points, while the
derivative of volume V2(r, t) bounded by Er,t is given by

∂

∂t

∣∣∣∣
t=0

V2(r, t) =
∫
Ĉ
−〈ξ, ~n〉E∗(da), (8.4)

where the minus sign is due to the fact that the normal vector points inwards.
Our goal is to show that if we take the trace in the remaining terms 〈∇ξ(B(p)·), DpE(v·)〉,〈
∇DpE(·)∇ξ~n,DpE(·)

〉
in (8.2), integrate them against E∗(da) over p and make r → 1−

we obtain the right-hand side of the equation in Theorem 5.2. As Er,t is not a piecewise
immersion, our main concern is how to perform this trace for a non-immersion. The
answer is that even though the trace is not well defined (as the metric degenerates), the
trace times the area form E∗(da) extends to a piecewise differential for in Ĉ. Let us
address first this procedure in Ω(r),Ω∗(r).

Lemma 8.6. The 2-form tr 〈R(ξ,DE(·))~n,DE(·)〉E∗da defined on the set of immersion
points {z ∈ Ω | ‖S (f−1)(z)‖Ω 6= 1} extends as C2,α differential 2-form to the locus
{z ∈ Ω | ‖S (f−1)(z)‖Ω = 1} as −2 〈ξ, ~n〉E∗da.
Similarly the 2-form tr

〈
∇DpE(·)∇ξ~n,DpE(·)

〉
E∗(da) extends as d(i∇ξ~n), where i∇ξ~n is

the 1-form defined by u 7→ 〈DpEu,∇ξ~n〉 and d denotes the exterior derivative.

Proof. As per the discussion before this Lemma, in the set {z ∈ Ω | ‖S (f−1)(z)‖Ω 6=
1} the 2-form tr 〈R(ξ,DE(·))~n,DE(·)〉E∗(da) agrees with −2 〈ξ, ~n〉E∗da. As {z ∈
Ω | ‖S (f−1)(z)‖Ω 6= 1} is an open dense set of Ω, then we can extend uniquely
tr 〈R(ξ,DE(·))~n,DE(·)〉E∗(da) as −2 〈ξ, ~n〉E∗da to all of Ω, as −2 〈ξ, ~n〉E∗da is a
well-defined C2,α 2-form in Ω.
Similarly, on the set {z ∈ Ω | ‖S (f−1)(z)‖Ω 6= 1} we have that

tr
〈
∇DpE(·)∇ξ~n,DpE(·)

〉
E∗(da) = E∗(div(∇ξ~n)da) = E∗(d 〈·,∇ξ~n〉) = d(i∇ξ~n).

As {z ∈ Ω | ‖S (f−1)(z)‖Ω 6= 1} is an open dense set in Ω and −d(i∇ξ~n) is a well-defined
C2,α form in Ω, we have that − tr

〈
∇DpE(·)∇ξ~n,DpE(·)

〉
E∗(da) extends uniquely as a

C2,α 2-form.

Observe that by Proposition 8.4 and Lemma 8.6, on {z ∈ Ω | ‖S (f−1)(z)‖Ω 6= 1} we
have that

tr 〈∇ξ(B·), DpE·〉E∗(da) = −d(i∇ξ~n)− 2 〈ξ, ~n〉E∗da, (8.5)

which by Lemma 5.4 yields that in particular on {z ∈ Ω | ‖S (f−1)(z)‖Ω 6= 1} of Ω we
have that

2E∗(δH + 1
4 〈δI, II〉 da) = −d(i∇ξ~n)− 2 〈ξ, ~n〉E∗da. (8.6)

Proof of Theorem 5.2. We proceed as in the proof of Theorem 5.7 by taking r close to
1 and defining V1(r, t), V2(r, t) as before, so that we have V (γt) = V1(r, t) + V2(r, t). In
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particular, V2(r, t) is defined as the volume bounded by Er,t. Namely, extend Er,t : Ĉ→
H3 as a map from the closed ball B3 so that

V2(r, t) =
∫
B3
E∗r,t(volH3).

For Er,t in A(r), we can establish and trace (8.2) in the embedded surface that contains
the image of Er,t (for r sufficiently close to 1) and then take the pullback by Er.t.
By Stokes, this definition does not depend on the specific extension of Er,t to B3.
Since Er,t vary C3,α as piecewisely defined map from Ω(r),Ω∗(r), A(r), we can take the
extension to vary C3,α on t and check that ∂tV2(r, t) is given by

∂tV2 =
(∫

Ω(r)
+
∫

Ω∗(r)
+
∫
A(r)
−〈ξ, ~n〉E∗da

)
where ξ = ∂tEr,0 and da is the area form of the orthogonal plane to ~n. The negative
sign is due to the fact that we are taking normal vector ~n pointing inward the region
bounded by Er,t.
Applying (8.5) we have then

∂tV2 =
(∫

Ω(r)
+
∫

Ω∗(r)
+
∫
A(r)

1
2 tr 〈∇ξ(B·), DpE·〉E∗(da) + 1

2d(i∇ξ~n)
)
.

Applying Stokes theorem for 1
2d(i∇ξ~n) yields the integral of 1

2 i∇ξ~n over each boundary
component. Since Er,t is embedded along ∂A(r), then as in [36] we have that along
∂A(r), we have

i∇ξ(~nΩ(r)) + i∇ξ(~nA(r)) = ∂θ+

∂t
E∗d`

i∇ξ(~nΩ∗(r)) + i∇ξ(~nA(r)) = ∂θ−

∂t
E∗d`

where θ+(x) (respectively θ−(x)) is the exterior dihedral angle of the planes orthogonal
to ~nΩ(r), ~nA(r) at E(x) (respectively ~nΩ(r)∗ , ~nA(r) at E(x)), and d` is the length form in
H3.
Applying then Stokes for ∂tV2 we get

∂tV2 =
(∫

Ω(r)
+
∫

Ω∗(r)
+
∫
A(r)

1
2 tr 〈∇ξ(B·), DpE·〉E∗(da)

)
+ 1

2

(∫
∂Ω(r)

∂θ+

∂t
E∗d`+

∫
∂Ω∗(r)

∂θ−

∂t
E∗d`

)
.

(8.7)

This proves the analog of Theorem 5.3 for the non-immersed case. Then finally by
applying (8.6) on the open dense set where EpΩ,EpΩ∗ are immersions, taking r → 1−
and proceeding as in the proof of Theorem 5.7, we have the desired formula.
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