

On the regular side of Random conformal geometry

through the lens of large deviations (3/3)

Yilin Wang (MIT) October 2), 2020

What happens when $\mathcal{K} \longrightarrow \infty$?

2

 $\overline{g_{t}(z)} - W_{t}$

max Solution

time

ormalized

Radial Loewner chain

Driving function the StES' $\begin{array}{l} \partial_{t}g_{t}(z) = g_{t}(z) \frac{\int_{t} + g_{t}(z)}{\int_{t} - g_{t}(z)} \\ g_{o}(z) = z \end{array}$ ((2) = max solution time. $K_{t} = \int 2e \mathbf{D} | \mathcal{D}(z) \leq t$ DE= [2 ED] E(2) 753 $ft: conformal D_t \longrightarrow D$, with $\begin{cases} g_t : 0 > 0 \\ g_t : 0 > e^t \end{cases}$

Radial SLE ~

Loewner - Kn farev equation
(Measure - driven Loewner chain)
N₄ =
$$\int p \in M(S' \times R_+)$$
,
 $p(S' \times I) = |I|$
Disintegration with the probability
we aswable
Loewner-Kufurev equation
 $\int \partial_t g_{t}(t) = g_{t}(t) \int_{S'} \frac{S + g_{t}(t)}{S - g_{t}(t)} dp_{t}(t)$
Same $G(t)$
 D_{t} , k_t
 $g_{p}(2) = 2$

Continuity

Lemma (e.g. J. Viklund - Sola - Turner, Miller Shuffield)
Weak
convegence
$$\mathcal{W}_+ \to f$$
 is a homeomorphism.
on compart \mathcal{W}_+ of $f(t, z) := gt'(z)$ (with unit convegence
where $f(t, z) := gt'(z)$ (with unit convegence
on compart)
R+ × D → D unif. on compart Caratheodory convegence
of Loewner chain.

Loewner - Kufarev energy St For $p \in N_{t}$, m, $(p \in)_{t, 2}$ $S_{t}(p) := \int_{0}^{\infty} L(p_{t}) dt$ $L(p_{t}) = \frac{1}{2} \int_{S'} |D_{t}'(\theta)|^{2} d\theta$ if $p_t = D_t^2(0) d\theta$ and $L(p_t) = \infty$ otherwise,

• $S_t(p) = 0$ (=) $p_t = the uniform measure on S'.$

$$LDP \circ f \quad SeiBut \quad dt \quad r \quad SUE_{oo}$$

$$S' \qquad IR + \qquad \rho^{k}$$

$$SeiBut \quad dt \quad e \quad M + \qquad Fark \quad E \quad M + \quad H +$$

Whole plane Loewner Kufarer Chain (More symmetric) S'× IR PEN same as NE but on $(p_t)_{t \in IR}) (D_t)_{t \in IR}) g_t : D_t \rightarrow D_t$ with ge'(o)=et uch tha is the radial Loewner - kufarer chain generated by (Pt+8) t>,0

What happens when
$$S(p) < \infty$$
?
 $S(p) = \int_{-\infty}^{\infty} L(p_{\ell}) dt$
 $L(p_{\ell}) = \frac{1}{2} \int_{0}^{\infty} (U_{5}')^{2} d\theta$
 $P_{\ell} = U_{\ell}^{2} d\theta$
 $L_{pewner energy}$
 $Thm (Viklund - W.)$
 $I f S(p) coo . then ∂D_{ℓ} is a Weil-Petursson
ghasiccircle . $\forall telR$. And $U \partial D_{\ell} = C N(0.3)$
 $t L_{0} \to D_{\ell}$ is continuous for Sup-norm.$

Foliation of Clio3 by Weil-Petosson quasi-circles

Winding function P

Then (Viklund - W.)

$$ubS(p) = D_{c}(P) \left(-\frac{1}{\pi}\int_{c} (\nabla P)^{2} dA_{c}\right)$$

Dre is finite iff the other is finite
• Inspired by SLE duality
 $k \leq 2 - \frac{1b}{k}$

Energy duality

Example

 $\begin{pmatrix} t & (d\theta) \\ = \frac{1}{7} \sin^2(\frac{\theta}{2}) d\theta & \text{for } t \in [0,1] \\ \frac{1}{2\pi} d\theta & \text{otherwise}$

Energy reversibility

S to IL

Weil-Petersson quasicircle Characteritation

$$\frac{\text{Cor.(V.W.)}}{\text{A Jordan curve & separating o and $\infty \text{ is WP}}$

$$\stackrel{()}{=} \underbrace{\text{V can be realized as leaf in}}_{\text{the folicition generated by a measure}}_{p \in \mathcal{N} \text{ with } Sip(\infty)}$$$$

WEIL-PETERSSON CURVES, CONFORMAL ENERGIES, $\beta\text{-}\text{NUMBERS},$ AND MINIMAL SURFACES

CHRISTOPHER J. BISHOP

Definition	Description
1	$\log f'$ in Dirichlet class
2	Schwarzian derivative
3	QC dilatation in L^2
4	conformal welding midpoints
5	$\exp(i\log f')$ in $H^{1/2}$
6	arclength parameterization in ${\cal H}^{3/2}$
7	tangents in $H^{1/2}$
8	finite Möbius energy
9	Jones conjecture
10	good polygonal approximations
11	β^2 -sum is finite
12	Menger curvature
13	biLipschitz involutions

14	between disjoint disks
15	thickness of convex hull
16	finite total curvature surface
17	minimal surface of finite curvature
18	additive isoperimetric bound
19	finite renormalized area
20	dyadic cylinder
21	closure of smooth curves in $T_0(1)$
22	P_{φ}^{-} is Hilbert-Schmidt
23	double hits by random lines
24	finite Loewner energy
25	large deviations of $SLE(0^+)$
26	

27 Leaf in coo Loewner chain Here driven by SIPICOO

Assume
$$p$$
 generates a folication $D(\phi) < \infty$
 $\phi = \phi^{h,t} + \phi^{o,t} + \phi^{o,t} + \psi^{o,t} + \psi^{o,$

V

Disintegration isometry
Under very weak assumption on p.
Thus (VW).

$$D_n \diamondsuit_{og_t}^{\circ,t}$$

 $L: (W_o^{\circ,t}O), D'^2) \rightarrow L^2(S^4 \times R_7, 2p)$
 $\phi \mapsto \frac{1}{2\pi} \int_{\mathbb{D}} \Delta(\phi \circ f_t)(z) P_D(z, e^{i\theta}) dA(z).$
is an bijective isometry with inverse operator
 $x[u](w) = 2\pi \int_0^{\tau(w)} P_D[u_t \rho_t](g_t(w)) dt, u_t(\cdot) := u(\cdot, t).$
harmonic function in Dt
 $b_{IFF} \rightarrow white noise decaposition. generalize [Hedenmalm-Nieminen]$

If
$$\varphi = winding function-$$

 $\varphi = \lambda_{t}^{2}(0) d0 dt$
Show $i(\varphi)(0, t) = -\frac{2\lambda_{t}^{2}}{\lambda_{t}}$

$$= 16 \int_{D}^{D} L(p_{E}) dr = 16 \int_{+}^{0} (p) \cdot M$$

Complex identity

Proposition 1.5 (Complex identity). Let ψ be a complex valued function on \mathbb{C} with $\mathcal{D}_{\mathbb{C}}(\psi) = \mathcal{D}_{\mathbb{C}}(\operatorname{Re} \psi) + \mathcal{D}_{\mathbb{C}}(\operatorname{Im} \psi) < \infty$ and let γ be a Weil-Petersson quasicircle compatible with $\operatorname{Im} \psi$. If

$$\zeta(z) := \psi \circ f(z) + \log \frac{f'(z)z}{f(z)} \quad and \quad \xi(z) := \psi \circ h(z) + \log \frac{h'(z)z}{h(z)},$$

then $\mathcal{D}_{\mathbb{C}}(\psi) = \mathcal{D}_{\mathbb{D}}(\zeta) + \mathcal{D}_{\mathbb{D}^*}(\xi).$

Complex identity

