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Chordal Loewner chains

Let v be a simple-'chord In (H, 0, o).
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+ v IS capacity-parametrized by [0, c0).

- W: R, — R is called the driving function of ~.

- Wo =0, W is continuous.

- The curve v can be recovered from W using Loewner's
differential equation: 0:g¢«(z) = 2/(gt(z) — W), go(2) =

- We say that ~ Is the chordal Loewner curve driven by W.

Introduced by [Loewner 23 math. Ann.].



The chordal Loewner energy (W. [1])

D c C a simply connected domain, a, b are two boundary points of D.

b

p: D=H @)\
o(a) = 0, (b) = o0 |

We define the Loewner energy of a simple chord v in (D, a, b) to be
1T [
() 1= lnom(p()) = W) i= 5 [ Wty
. t) — W(ti_q))?

— s 1 S (W( - tHi—w))
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where W is the driving function of (7).



Loewner loop energy (Rohde, W. [2])

More generally, we define the Loewner energy of a simple loop
~:[0,1] — C rooted at 4y = ; to be

\/\) - R—> R _oo
. c v
! € \7[075]7767'70 !
! o0 ° . VE/TYO
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Remarks: I'(y,70) = 0 if and only if  is a circle.

If o € PSL(2,C), then I*(¢(7), ¢(0)) = I'(7:70).
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Theorem (Rohde, W. [2])
The Loewner loop energy is independent of the choice of the root.
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[2] S. Rohde, Y. Wang The Loewner energy of loops and regularity of driving
functions IMRN (2019)
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Equivalent descriptions

[3] Y. Wang Equivalent Descriptions of the Loewner Energy INVENT. MATH.
218(2) (2019)



l. Dirichlet energy of log-derivatives of conformal maps

For D ¢ C, we write

Doli) = 1 | Vel a2

Theorem (W. [3])
If v passes through oo, we have the identity

I(, 00) = Dr(log f']) + Da-(log|g']).

f(oo) = oo
H H
/y _/\_/_ _
o g(00) = ooy

The identity is related to SLE/GFF couplings but the proof is purely analytic.
Further connection to SLE/GFF couplings is studied in [Viklund, W. 4].



Il. Loewner Energy vs. Determinants: the set-up

© go(2) = (1+|4z\2)2 dz’ denotes the spherical

metric on C ~ S2

- g = e’%gy be a metric conformally equivalent
to gOr 2 S COO(SzaR):

-~ a C>* smooth simple loop in %

- Dy and D, two connected components of S?\;

-+ Ay(D;) the Laplace-Beltrami operator with
Dirichlet boundary condition on D;.



ll. Loewner Energy vs. Determinants

H(7,g) = logdet; Ag(S?)—logAreay(S*)—log dete Ag(Dr)—log det Ag(Dy)

Theorem (W. [3])
If g = e’?go, we have:

1. H(-,9) = H(:,go), i.e. H only depends on the conformal class of g;
2. Let v be a smooth Jordan curve on S*. We have the identity

I*(7,7(0)) = 12H(7, go) — 12H(S", go)-

Proof Sketch.

Based on the Polyakov-Alvarez formula which computes explicitly
log Ay, (D7) — log Ay, (D7) in terms of scalar curvatures, geodesic
curvatures, and log|f'| of a conformal map f: Dy — D,

Use the identity between the Dirichlet energy of log|f'| and I\ H



Universal Liouville action

Theorem [Takhtajan & Teo '06 Memoir AMS]
The universal Liouville action Sy :

(%)= [ 7@ a2+ [

is a Kahler potential for the Weil-Petersson metric.
S\ (3/) (oo 3’9 X s o \/\f&f‘“ Terersson O)wuﬁ cirela
Lf 25
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lll. Loewner Energy vs. Weil-Petersson quasicircles

Theorem (W. [3])

A bounded simple loop ~ has finite Loewner energy if and only if
[p] € To(1). Moreover,

H(v) = Sa([g]) /.

Remark: This is proved using the identity with det:A, but there is no more
regularity assumption.
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WEIL-PETERSSON CURVES, CONFORMAL ENERGIES,
S-NUMBERS, AND MINIMAL SURFACES

CHRISTOPHER J. BISHOP

Definition Description
1 log f" in Dirichlet class
2 Schwarzian derivative
3 QC dilatation in L?
4 conformal welding midpoints
5 exp(ilog f') in H'/?
6 arclength parameterization in H3/2
7 tangents in H'/?
8 finite Mobius energy
9 Jones conjecture
10 good polygonal approximations
11 32-sum is finite
12 Menger curvature
13 biLipschitz involutions

14 between disjoint disks

15 thickness of convex hull

16 finite total curvature surface
17 | minimal surface of finite curvature
18 additive isoperimetric bound
19 finite renormalized area

20 dyadic cylinder

21 | closure of smooth curves in Tj(1)
22 F; is Hilbert-Schmidt

23 double hits by random lines
24 finite Loewner energy

25 large deviations of SLE(0")
26 Brownian loop measure

The names of 26 characterizations of Weil-Peterson curves




Interplay between Loewner and Dirichlet energies:

conformal welding & flow-lines (joint with F. Viklund, KTH)

[4] F. Viklund, Y. Wang Interplay between Loewner and Dirichlet energies via
conformal welding and flow-lines GAFA 30 (2020)



Cutting and welding identity

Rem\ - U_(A\NJ
Let ¢ € £(C) € WE?(C) € VMO(C), f, g conformal maps from H, H*

loc

onto H, H* fixing oc.
EU\C&‘\AAW (reen NRADATS

H J f H

e dz? L eMde? 0 1]
H 62vdz2

We have e?? € L} _(C) and the transformation law:

u(z) = pof(z) +log|f'(z)], v(z) =pog(z)+loglg'(2)l,

such that e?“dz? = f*(e*?dz?), e?Vdz? = g*(e*?dz?).



Cutting and welding identity, cont’d

eWdz? 2’ 0 1
0 1 <~g/ 0 AH*
H 0202
Theorem (cutting)
We have the identity
De(p) + = Du(u) + Da-(v).

Probsy: C\l/\ec\( o\?mcf\g LW’B Shoct "j’””%)
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e GFF X Dichlet eneyy in D

Do(y) = 1 [ V4@ 02

the action functional/large deviation rate function of (a small
parameter 7 times) the Gaussian free field (GFF)& H~ T D)

“P(/kGFF stays close to 2p) ~ e P¥)/* a5k — 0.



Large deviation heuristics

SLE/GFF ~ .= \/k Finite energy

SLE. loop. Finite energy Jordan curve, 7.
Free boundary GFF v® on H (on C). | 2u, u € E(H) (2¢, ¢ € E(C)).
7-LQG on quantum plane ~ '®dz?. | e*?dz?, ¢ € £(C).

~v-LQG on quantum half-plane on H e*'dz*, u € E(H).

cuts an Finite energy n cuts ¢ € £(C)
into into u € E(H),v € E(H*) and
ind. quantum half-planes €7®1, 72, = Du(u) + Du=(v).

SLE/GFF = one may expect that under appropriate topology and for small ,

= P(\/k®; stays close to 2u, v/k®, stays close to 2v)"



Large deviation heuristics, cont’'d

From the large deviation principle and the independence of SLE and &, one
expects

lim —xlo

/-ili)nO 108

= lim —klog P(SLE,. stays close to n) + Iim0 —k log P(v/k® stays close to 2¢)
K—r

~—0

= 1"(n) + De().

Similarly, the independence between ®; and ®, gives
Iim0 —k log P(v/k®; stays close to 2u, /k®, stays close to 2v)
rR—
= DH(U) + Dy~ (V)

— :DH(U)—l—DH*(V)



Conversely

One expects the density of an independent couple (SLE,, /< GFF) has
density

p(n, 2¢) ox exp(—/"(1)/ k) exp(— /K)
= exp(—Du(2u)/x) exp(—Dy-(2v)/k)

the identity on the action functional also suggests the SLE/GFF coupling.



COnVQVSL DPemHOﬂ : Covdormel uodo\frls

Iﬁ@&%w\( nglu) <oe ®LH* (V) <oo
D U ead V], € H* < VMo(R)

There exists a unique normalized solution (n, f, g) to the welding
homeomorphism induced by e" and €Y, and the curve obtained has finite

Loewner energy.

Moreover, ¢ defined from the transformation law is in £(C), therefore

the welding identity holds:

I*(n) = Du(u) + Du-(v) — De(p).

H H
6299(2)d2,2 - eQudZQ Q 1

0 1 g 0

H* e2vdz2 H



Application: arclength conformal welding

Assume 1,75 are rectifiable
Jordan curves and |n1| = ||

Y 1 mp — np preserves arclength.
n such that G™lo F = 4

e [Huber 1976] The solution does not always exist.

e [Bishop 1990] If the solution exists, 7 can be a curve of positive area
and the solution is not unique.

e [David 1982, Zinsmeister 1982, Jerison-Kenig 1982] If 1 and 1), are
chord-arc, then the solution exists and is unique, and is o
quasicircle.

e [Bishop 1990] But the Hausdorff dimension of 7 can take any value in
1 <d <2 = not rectifiable.

o \/\l( 3\\5(,\) 2 The class of finite energy curves is closed under
arclength welding.



How does the energy change under the arclength welding operation?

I(n) 72 1"(m)+ I"(n2)



Arclength welding of finite energy domains

Assume I'(n;) < oo, I(n2) < 00, both passing through oco. Let H;, HF be
the two connected components of C \ 7;.

Corollary (sub-additivity)

Let ) (resp. 7j) be the arclength welding curve of the domains H; and H}
(resp. Hy, and H; ). Then n and ij have finite energy. Moreover,

I(n) + 1%(7) < 1"(m) + I"(n2).

m H1 F

_F, B
Yim =
\Li\/ G * "
12 Hz ~ H

P(\O‘Ug: El/\(fjkﬂ dQ\éS»\(l)od*Qol. —\/\V\(‘ou\é\/\ \,\)(’,IATﬁ



Winding identity

Assume 7 is rectifiable.

| f(oo) =00
L g(00) = 00
H* H*
We denote by
arg f'(F1(z z € H,;
P[T](Z):{ /( _1( ) *
argg'(g=(2)) zeH

which is the Poisson integral of 7 in C.



Flow-line identity

1 \ % f R““ lls‘g |
N~ 03 v
Notice that arg(f’) has the same Dirichlet energy as log |f’|. We have the

identity
I*(n) = Du(arg f') + Dy~ (arg g’) = Dec(P[r]).

Consequence: I5(n) < co < 1 is chord-arc and 7 € HY/2(n).



Flow-line identity, cont’d

Corollary (Flow-line identity)

Conversely, if ¢ € £(C) N C°(C), then for all zy € C, there is a unique
solution to the differential equation

0 (t) = ") vt e R and 7(0) = z
is an infinite arclength parametrized simple curve and
De(p) = I'(n) + De (o),

where o = © — Plpl,]. ) @(DQ? \v\))

SLE/GFF counterpart (imaginary geometry): The flow-lines of e'V<GFF/2
is an SLE,; curve. Conditioning on the flow-line, g is an 0-boundary GFF.



Application: Equipotential energy monotonicity

_____

-

Corollary [infinite curve]
Let r > 0, we have I5(n") < IY(n).

T n
fD—>

Corollary [bounded curve]
For 0 < r < 1, we have IX(n,) < I*(f(C)) < IY(n).



Complex identity

Corollary (Complex identity)

Let ¢ be a complex-valued function on C with finite Dirichlet energy and
Imy € CO(C). Let n be a flow-line of the vector field e¥ and f,g the
conformal maps associated to 1. Then we have

De(¥) = Du(C) + DPu-(£),

where ( = of +logf’, E =vYog+logg’.




A (very loose) dictionary

SLE/GFF with 7 = v/ — 0

Finite energy

SLE. loop.

Finite energy Jordan curve, 7.

Free boundary GFF v® on H (on C).

2u, u € E(H) (2, p € E(C)).

~-LQG on quantum plane ~ e7®dz2.

e?vdz?, p € £(C).

v-LQG on quantum half-plane on H

e?!dz?, u € E(H).

~v-LQG boundary measure on R ~ e7®/2dx

e'®dx, u e HY2(R).

SLE, cuts an independent
quantum plane into
independent quantum half-planes.

Finite energy n cuts ¢ € £(C)
into u € £(H), v € £(H*) and
I*(n) 4+ Dc(p) = Du(u) 4 Dax(v)-

Quantum zipper: isometric welding
of independent v-LQG measures on R
produces SLE.

Isometric welding
of e’dx and eVdx, u,v € H/?(R)
produces a finite energy curve.

v-LQG chaos w.r.t. Minkowski content
equals the pushforward of
v-LQG measures on R.

e?In|dz|, ¢ln € HY/2(n),
equals the pushforward of
e'dx and e“dx, u,v € HY/2(R).

Bi-infinite flow-line of e/®/X ~~ e7®/2

is an SLE,, loop measurable wrt. ®.

Bi-infinite flow-line of e/¥
is a finite energy curve
Dc(p) = I"(n) + Dc(wo)

Mating of trees

Complex identity < welding+flow-line.







