

On the regular side of Random conformal geometry

through the lens of large deviations (2/3)

Yilin Wang (MIT) October **2**°, 2020

References

- () [1] Y. Wang The energy of a deterministic Loewner chain: Reversibility and interpretation via SLE_{0+} JEMS 21(7) (2019)
- [2] S. Rohde, Y. Wang The Loewner energy of loops and regularity of driving functions IMRN (2019)
- [] [3] Y. Wang Equivalent Descriptions of the Loewner Energy INVENT. MATH. 218(2) (2019)
- [4] F. Viklund, Y. Wang Interplay between Loewner and Dirichlet energies via conformal welding and flow-lines GAFA 30 (2020)

[5] M. Ang, M. Park, Y. Wang Large deviations of radial SLE_{∞} EJP 25(102) (2020)

[6] E. Peltola, Y. Wang Large deviations of multichordal SLE0+, real rational functions, and zeta-regularized determinants of Laplacians PREPRINT (2020)

[7] F. Viklund, Y. Wang The Loewner-Kufarev Energy and Foliations by Weil-Petersson Quasicircles Available soon (2020)

Chordal Loewner chains

- γ is capacity-parametrized by $[0,\infty)$.
- $W : \mathbb{R}_+ \to \mathbb{R}$ is called the **driving function** of γ .
- $W_0 = 0$, W is continuous.
- The curve γ can be recovered from W using Loewner's differential equation: $\partial_t g_t(z) = 2/(g_t(z) W_t), g_0(z) = z$.
- We say that γ is the **chordal Loewner curve** driven by *W*.

Introduced by [Loewner '23 Math. Ann.].

The chordal Loewner energy (W. [1])

 $D \subset \mathbb{C}$ a simply connected domain, a, b are two boundary points of D.

We define the Loewner energy of a simple chord γ in (D, a, b) to be

$$I_{D,a,b}(\gamma) := I_{\mathbb{H},0,\infty}(\varphi(\gamma)) := I(W) := \frac{1}{2} \int_0^\infty W'(t)^2 dt$$
$$= \sup_{0=t_0 < t_1 < \dots < t_n} \frac{1}{2} \sum_{i=1}^n \frac{(W(t_i) - W(t_{i-1}))^2}{t_i - t_{i-1}}$$

where W is the driving function of $\varphi(\gamma)$.

Loewner loop energy (Rohde, W. [2])

More generally, we define the Loewner energy of a simple loop $\gamma : [0, 1] \mapsto \hat{\mathbb{C}}$ rooted at $\gamma_0 = \gamma_1$ to be

W: 1R -> 1R

$$I^{L}(\gamma,\gamma_{0}) := \lim_{\varepsilon \to 0} I_{\hat{\mathbb{C}} \setminus \gamma[0,\varepsilon],\gamma_{\varepsilon},\gamma_{0}}(\gamma[\varepsilon,1]).$$

$$I^{L}_{2} \int_{-\infty}^{\infty} \dot{W}^{2}(\varepsilon) d\tau$$

Remarks: $I^{L}(\gamma, \gamma_{0}) = 0$ if and only if γ is a circle.

If $\varphi \in \mathsf{PSL}(2,\mathbb{C})$, then $l^{L}(\varphi(\gamma),\varphi(\gamma_{0})) = l^{L}(\gamma,\gamma_{0})$.

Theorem (Rohde, W. [2])

The Loewner loop energy is **independent** of the choice of the root.

[2] **S. Rohde, Y. Wang** The Loewner energy of loops and regularity of driving functions IMRN (2019)

Equivalent descriptions

[3] **Y. Wang** Equivalent Descriptions of the Loewner Energy INVENT. MATH. 218(2) (2019)

I. Dirichlet energy of log-derivatives of conformal maps

For $D \subset \mathbb{C}$, we write

$$\mathcal{D}_D(\varphi) := rac{1}{\pi} \int_D |\nabla \varphi(z)|^2 dz^2.$$

Theorem (W. [3])

If γ passes through ∞ , we have the identity

 $I^{L}(\gamma,\infty) = \mathcal{D}_{\mathbb{H}}(\log |f'|) + \mathcal{D}_{\mathbb{H}^{*}}(\log |g'|).$

The identity is related to SLE/GFF couplings but the proof is purely analytic. Further connection to SLE/GFF couplings is studied in [*Viklund*, *W*. 4].

- $g_0(z) = \frac{4}{(1+|z|^2)^2} dz^2$ denotes the spherical metric on $\hat{\mathbb{C}} \simeq S^2$;
- $g = e^{2\varphi}g_0$ be a metric conformally equivalent to $g_0, \varphi \in C^{\infty}(S^2, \mathbb{R})$;
- γ a C^{∞} smooth simple loop in S²;
- D_1 and D_2 two connected components of $S^2 \setminus \gamma$;
- $\Delta_g(D_i)$ the Laplace-Beltrami operator with Dirichlet boundary condition on D_i .

 $\mathcal{H}(\gamma, g) := \log \det_{\zeta} \Delta_g(S^2) - \log \operatorname{Area}_g(S^2) - \log \det_{\zeta} \Delta_g(D_1) - \log \det_{\zeta} \Delta_g(D_2)$ **Theorem (W. [3])** If $q = e^{2\varphi}q_0$, we have:

- 1. $\mathcal{H}(\cdot,g)=\mathcal{H}(\cdot,g_0)$, i.e. \mathcal{H} only depends on the conformal class of g;
- 2. Let γ be a smooth Jordan curve on S². We have the identity

$$I^{L}(\gamma,\gamma(0)) = 12\mathcal{H}(\gamma,g_0) - 12\mathcal{H}(S^1,g_0).$$

Proof Sketch.

Based on the **Polyakov-Alvarez formula** which computes explicitly $\log \Delta_{g_0}(D_1) - \log \Delta_{g_0}(\mathbb{D}_1)$ in terms of scalar curvatures, geodesic curvatures, and $\log |f'|$ of a conformal map $f : \mathbb{D}_1 \to D_1$.

Use the identity between the Dirichlet energy of $\log |f'|$ and I^L .

Universal Liouville action

Theorem [Takhtajan & Teo '06 Memoir AMS] The universal Liouville action S_1 : $S_1(\checkmark) := \int_{\mathbb{D}} \left| \frac{f''}{f'}(z) \right|^2 dz^2 + \int_{\mathbb{D}^*} \left| \frac{g''}{g'}(z) \right|^2 dz^2 + 4\pi \log \left| \frac{f'(0)}{g'(\infty)} \right|$

is a Kähler potential for the Weil-Petersson metric.

Silo) coo (Vis a Weil-Petersson quasicircle, def 25

III. Loewner Energy vs. Weil-Petersson quasicircles

Theorem (W. [3])

A bounded simple loop γ has finite Loewner energy if and only if $[\varphi] \in T_0(1)$. Moreover,

$$^{L}(\gamma) = \mathsf{S}_{\mathsf{1}}([\varphi])/\pi.$$

Remark: This is proved using the identity with $det_{\zeta}\Delta$, but there is no more regularity assumption.

WEIL-PETERSSON CURVES, CONFORMAL ENERGIES, $\beta\text{-}\text{NUMBERS},$ AND MINIMAL SURFACES

CHRISTOPHER J. BISHOP

Definition	Description
1	$\log f'$ in Dirichlet class
2	Schwarzian derivative
3	QC dilatation in L^2
4	conformal welding midpoints
5	$\exp(i\log f')$ in $H^{1/2}$
6	arclength parameterization in $H^{3/2}$
7	tangents in $H^{1/2}$
8	finite Möbius energy
9	Jones conjecture
10	good polygonal approximations
11	β^2 -sum is finite
12	Menger curvature
13	biLipschitz involutions

14	between disjoint disks	
15	thickness of convex hull	
16	finite total curvature surface	
17	minimal surface of finite curvature	
18	additive isoperimetric bound	
19	finite renormalized area	
20	dyadic cylinder	
21	closure of smooth curves in $T_0(1)$	
22	P_{φ}^{-} is Hilbert-Schmidt	
23	double hits by random lines	
24	finite Loewner energy	- Here
25	large deviations of $SLE(0^+)$	
26	Brownian loop measure	

The names of 26 characterizations of Weil-Peterson curves

Interplay between Loewner, and Dirichlet energies:

conformal welding & flow-lines (joint with F. Viklund, KTH)

[4] F. Viklund, Y. Wang Interplay between Loewner and Dirichlet energies via conformal welding and flow-lines GAFA 30 (2020)

•

Cutting and welding identity

Real-valued Let $\varphi \in \mathcal{E}(\mathbb{C}) \subset W^{1,2}_{loc}(\mathbb{C}) \subset VMO(\mathbb{C})$, f, g conformal maps from \mathbb{H}, \mathbb{H}^* onto H, H^* fixing ∞ .

We have $e^{2\varphi} \in L^1_{loc}(\mathbb{C})$ and the transformation law:

 $u(z) = \varphi \circ f(z) + \log |f'(z)|, \quad v(z) = \varphi \circ g(z) + \log |g'(z)|,$

such that $e^{2u}dz^2 = f^*(e^{2\varphi}dz^2)$, $e^{2v}dz^2 = g^*(e^{2\varphi}dz^2)$.

Cutting and welding identity, cont'd

Theorem (cutting)

We have the identity

$$\mathcal{D}_{\mathbb{C}}(\varphi) + I^{L}(\eta) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$$

Proof: Check directly Lvery short proof)

$$IP(SLE_k \text{ stays close to } \mathcal{S}) \sim exp(-\frac{T_D(\mathcal{S})}{k})$$
as $k \rightarrow \mathcal{O}+$

JE GEF & Dirichlet energy in D

$$\mathcal{D}_D(\varphi) := rac{1}{\pi} \int_D |\nabla \varphi(z)|^2 dz^2.$$

the action functional/large deviation rate function of (a small parameter γ times) the **Gaussian free field** (GFF) $\in H^{-\varepsilon}(\mathcal{D})$

"
$$P(\sqrt{\kappa}GFF \text{ stays close to } 2\varphi) \approx e^{-\mathcal{D}(\varphi)/\kappa}$$
, as $\kappa \to 0$."

SLE/GFF $\gamma := \sqrt{\kappa}$	Finite energy	
SLE_{κ} loop.	Finite energy Jordan curve, η .	
Free boundary GFF $\gamma \Phi$ on $\mathbb H$ (on $\mathbb C$).	$2u, \ u \in \mathcal{E}(\mathbb{H}) \ (2arphi, \ arphi \in \mathcal{E}(\mathbb{C})).$	
γ -LQG on quantum plane $pprox e^{\gamma \Phi} dz^2$.	$e^{2arphi} dz^2, arphi \in \mathcal{E}(\mathbb{C}).$	
$\gamma extsf{-LQG}$ on quantum half-plane on $\mathbb H$	$e^{2u}dz^2, u \in \mathcal{E}(\mathbb{H}).$	
SLE_{κ} cuts an independent	Finite energy η cuts $arphi \in \mathcal{E}(\mathbb{C})$	
quantum plane $e^{\gamma \Phi} dz^2$ into	into $u\in \mathcal{E}(\mathbb{H}), v\in \mathcal{E}(\mathbb{H}^*)$ and	
ind. quantum half-planes $e^{\gamma \Phi_1}, e^{\gamma \Phi_2}$.	$I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$	

SLE/GFF \Rightarrow one may expect that under appropriate topology and for small κ ,

"P(SLE_{κ} loop stays close to η , $\sqrt{\kappa}\Phi$ stays close to 2φ) = P($\sqrt{\kappa}\Phi_1$ stays close to 2u, $\sqrt{\kappa}\Phi_2$ stays close to 2v)" From the large deviation principle and the independence of SLE and $\Phi,$ one expects

$$\lim_{\kappa \to 0} -\kappa \log P(\mathsf{SLE}_{\kappa} \text{ stays close to } \eta, \sqrt{\kappa} \Phi \text{ stays close to } 2\varphi)$$

=
$$\lim_{\kappa \to 0} -\kappa \log P(\mathsf{SLE}_{\kappa} \text{ stays close to } \eta) + \lim_{\kappa \to 0} -\kappa \log P(\sqrt{\kappa} \Phi \text{ stays close to } 2\varphi)$$

= $I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi).$

Similarly, the independence between Φ_1 and Φ_2 gives

 $egin{aligned} &\lim_{\kappa o 0} -\kappa \log \mathrm{P}(\sqrt{\kappa} \Phi_1 ext{ stays close to } 2u, \sqrt{\kappa} \Phi_2 ext{ stays close to } 2v) \ &= \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^*}(v). \end{aligned}$

 $\implies I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$

One expects the density of an independent couple (SLE_{κ}, $\sqrt{\kappa}$ GFF) has density

$$\rho(\eta, 2\varphi) \propto \exp(-I^{L}(\eta)/\kappa) \exp(-\mathcal{D}_{\mathbb{C}}(\varphi)/\kappa)$$
$$= \exp(-\mathcal{D}_{\mathbb{H}}(2u)/\kappa) \exp(-\mathcal{D}_{\mathbb{H}^{*}}(2v)/\kappa)$$

the identity on the action functional also suggests the SLE/GFF coupling.

Converse operation : conformal welding

There exists a unique normalized solution (η, f, g) to the welding homeomorphism induced by e^u and e^v , and the curve obtained has finite Loewner energy.

Moreover, φ defined from the **transformation law** is in $\mathcal{E}(\mathbb{C})$, therefore the welding identity holds:

$$I^{L}(\eta) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v) - \mathcal{D}_{\mathbb{C}}(\varphi).$$

Application: arclength conformal welding

Assume η_1, η_2 are rectifiable Jordan curves and $|\eta_1| = |\eta_2|$.

 $\psi: \eta_1 \rightarrow \eta_2$ preserves arclength.

- [Huber 1976] The solution does not always exist.
- [Bishop 1990] If the solution exists, η can be a curve of positive area and the solution is not unique.
- [David 1982, Zinsmeister 1982, Jerison-Kenig 1982] If η₁ and η₂ are chord-arc, then the solution exists and is unique, and is α quasicircle.
- [Bishop 1990] But the Hausdorff dimension of η can take any value in $1 < d < 2 \implies$ not rectifiable.
- We show : The class of finite energy curves is closed under arclength welding.

How does the energy change under the arclength welding operation?

 $I^{L}(\eta)$?? $I^{L}(\eta_{1}) + I^{L}(\eta_{2})$

Assume $I^{L}(\eta_{1}) < \infty$, $I^{L}(\eta_{2}) < \infty$, both passing through ∞ . Let H_{i} , H_{i}^{*} be the two connected components of $\mathbb{C} \smallsetminus \eta_{i}$.

Corollary (sub-additivity)

Let η (resp. $\tilde{\eta}$) be the arclength welding curve of the domains H_1 and H_2^* (resp. H_2 and H_1^*). Then η and $\tilde{\eta}$ have finite energy. Moreover,

$$I^{L}(\eta) + I^{L}(\tilde{\eta}) \leq I^{L}(\eta_{1}) + I^{L}(\eta_{2}).$$

Assume η is rectifiable.

We denote by

$$\mathcal{P}[\tau](z) = egin{cases} rg f'(f^{-1}(z)) & z \in H; \ rg g'(g^{-1}(z)) & z \in H^* \end{cases}$$

which is the Poisson integral of τ in \mathbb{C} .

Notice that $\arg(f')$ has the same Dirichlet energy as $\log |f'|$. We have the identity

$$I^{L}(\eta) = \mathcal{D}_{\mathbb{H}}(\arg f') + \mathcal{D}_{\mathbb{H}^{*}}(\arg g') = \mathcal{D}_{\mathbb{C}}(\mathcal{P}[\tau]).$$

Consequence: $I^{L}(\eta) < \infty \Leftrightarrow \eta$ is chord-arc and $\tau \in H^{1/2}(\eta)$.

Corollary (Flow-line identity)

Conversely, if $\varphi \in \mathcal{E}(\mathbb{C}) \cap C^0(\hat{\mathbb{C}})$, then for all $z_0 \in \mathbb{C}$, there is a unique solution to the differential equation

$$\eta'(t) = e^{i\varphi(\eta(t))}, \, \forall t \in \mathbb{R} \quad \text{and} \quad \eta(0) = z_0$$

is an infinite arclength parametrized simple curve and

$$\mathcal{D}_{\mathbb{C}}(\varphi) = I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi_{0}),$$

where $\varphi_{0} = \varphi - \mathcal{P}[\varphi|_{\eta}].$

SLE/GFF counterpart (imaginary geometry): The flow-lines of $e^{i\sqrt{\kappa}GFF/2}$ is an SLE_{κ} curve. Conditioning on the flow-line, φ_0 is an 0-boundary GFF.

Application: Equipotential energy monotonicity

Corollary [infinite curve]

Let r > 0, we have $I^{L}(\eta^{r}) \leq I^{L}(\eta)$.

Corollary [bounded curve] For 0 < r < 1, we have $I^{L}(\eta_{r}) \leq I^{L}(f(C)) \leq I^{L}(\eta)$.

Corollary (Complex identity)

Let ψ be a complex-valued function on \mathbb{C} with finite Dirichlet energy and Im $\psi \in C^0(\hat{\mathbb{C}})$. Let η be a flow-line of the vector field e^{ψ} and f, g the conformal maps associated to η . Then we have

 $\mathcal{D}_{\mathbb{C}}(\psi) = \mathcal{D}_{\mathbb{H}}(\zeta) + \mathcal{D}_{\mathbb{H}^*}(\xi),$

where $\zeta = \psi \circ f + \overline{\log f'}$, $\xi = \psi \circ g + \overline{\log g'}$.

A (very loose) dictionary

SLE/GFF with $\gamma = \sqrt{\kappa} \rightarrow 0$	Finite energy
SLE_{κ} loop.	Finite energy Jordan curve, η .
Free boundary GFF $\gamma\Phi$ on $\mathbb H$ (on $\mathbb C$).	$2u, \ u \in \mathcal{E}(\mathbb{H}) \ (2arphi, \ arphi \in \mathcal{E}(\mathbb{C})).$
$\gamma ext{-}LQG$ on quantum plane $pprox e^{\gamma \Phi} dz^2$.	$e^{2arphi} dz^2, arphi \in \mathcal{E}(\mathbb{C}).$
$\gamma ext{-}LQG$ on quantum half-plane on $\mathbb H$	$e^{2u}dz^2, u \in \mathcal{E}(\mathbb{H}).$
γ -LQG boundary measure on $\mathbb{R} pprox e^{\gamma \Phi/2} dx$	$e^{u(x)}dx, u \in H^{1/2}(\mathbb{R}).$
SLE_κ cuts an independent	Finite energy η cuts $arphi \in \mathcal{E}(\mathbb{C})$
quantum plane into	into $u\in \mathcal{E}(\mathbb{H}), v\in \mathcal{E}(\mathbb{H}^*)$ and
independent quantum half-planes.	$I^L(\eta) + \mathcal{D}_{\mathbb{C}}(arphi) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^*}(v).$
Quantum zipper: isometric welding	Isometric welding
of independent $\gamma ext{-}LQG$ measures on $\mathbb R$	of $e^u dx$ and $e^v dx$, $u,v \in H^{1/2}(\mathbb{R})$
produces SLE_{κ} .	produces a finite energy curve.
γ -LQG chaos w.r.t. Minkowski content	$e^{arphiert \eta}ert dzert, arphiert_\eta\in H^{1/2}(\eta),$
equals the pushforward of	equals the pushforward of
$\gamma ext{-}LQG$ measures on $\mathbb R.$	$e^u dx$ and $e^v dx$, $u,v \in H^{1/2}(\mathbb{R}).$
Bi-infinite flow-line of $e^{i\Phi/\chi}pprox e^{i\gamma\Phi/2}$	Bi-infinite flow-line of $e^{i\varphi}$
is an SLE_κ loop measurable wrt. Φ .	is a finite energy curve
	$\mathcal{D}_{\mathbb{C}}(arphi) = I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(arphi_{0}).$
Mating of trees	$\begin{array}{c} Complex \text{ identity} \Leftrightarrow welding+flow-line. \end{array}$