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Chordal Loewner chains

Let v be a simple-'chord In (H, 0, o).
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+ v IS capacity-parametrized by [0, c0).

- W: R, — R is called the driving function of ~.

- Wo =0, W is continuous.

- The curve v can be recovered from W using Loewner's
differential equation: 0:g¢«(z) = 2/(gt(z) — W), go(2) =

- We say that ~ Is the chordal Loewner curve driven by W.

Introduced by [Loewner 23 math. Ann.].



A trivial example

- IfW=0, then v = iR,.

8
Yt gi(z) =z + % + 0(%) n(s) = ge(Ve+s)

»
>

as Zz — o0

0 W; = gt(?’t) =0

* When the curve is driven by W = /kB where B is 1-d Brownian
motion, the curve generated is the Schramm-Loewner Evolution of
parameter « (SLE,). It is introduced by [Schramm "00 isrjm].



The chordal Loewner energy (W. [1])

D c C a simply connected domain, a, b are two boundary points of D.

b

p: D=H @)\
o(a) = 0, (b) = o0 |

We define the Loewner energy of a simple chord v in (D, a, b) to be
1T [
() 1= lnom(p()) = W) i= 5 [ Wty
. t) — W(ti_q))?

— s 1 S (W( - tHi—w))

O=to<ty<---<tp 2 i—1

where W is the driving function of (7).



Properties

p: D—=H )\
p(a) =0, p(b) = 0 '

+ For ¢ > 0, we have Ii,0,00(7) = l1,0,00(CY)-
= The Loewner energy is well-defined in (D, a, b).

* Ipap(y) =04 W=0 <« ~visthe hyperbolic geodesic connecting
a and b. [(SLE. ‘g M- dins /H-%>
* Ip.ap(7) < o0, then « is a rectifiable [Friz & Shekhar PTRF "15].

- If and only if characterization by Weil-Petersson quasicircles [W.
Invent. '19].



SLE, vs. Loewner energy

“V/kB has the distribution on C°(R,,R) with density
p(W) o< exp(—I(W)/k)DW."

However, I(B) = oo with probability 1.

The Schilder’s theorem states that I(W) is also the large deviation
rate function for Brownian motion v/xB as k — 0. Loosely speaking,

“P(+/kB stays close to W) ~ exp (—@)

K



Large deviations of chordal SLE

Assume D = D. We endow X (D; a, b) with thezpradiict topology
induced from the Hausdorff metric.

Theorem

The family of laws (P*).~o of the chordal SLE, curves v" satisfies the
following LDP with good rate function Ip:

For any subset A of X(D; a,b), we have

—inf Ip(7) < lim & logP*[y* € A°]

YEA k— 04
< lim klogPr[y® € A] < — inf Ip(7)
Kk—0+ ~EA

and the sub-level set (Ip)~'[0, c] is compact for any ¢ > 0.
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Consequence: Energy reversibility

Theorem (Energy reversibility TW. Jems } )
We have Ip q p(7v) = Ip.b.a(7y). Itisequivalent to lo,0o(Y) = l,0,00(—1/7).

This deterministic result is based on (combined with the large deviation result):

Theorem (SLE reversibility [Zhan '08 AoP])

For k < 4, the law of the trace of SLE,, in (D, a, b), is the same as the
law of SLE, in (D, b, a).

In fact, the decay rate as k — 0 of the probability of SLE, stays close to ~ is the same
as the decay rate of being close to —1/+.

A ‘m.& thot SLE will ogpest Lectwre 2 |



Multichordal SLE: Examples

Simulations of multichordal SLEs:

The corresponding link pattern «:
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Multichordal SLE,: Characterization by conditioning

Fix a = {{ay,b:},{az, by},...,{an, by}} a planar link pattern. There

are C, = %M(zn”) of those link patterns.
Lon
o . Lo Multichordal SLE is characterized as ~; being
the chordal SLE, in D; (gray) for all
T9 .
J=1,...,n.

Q/ [

Cardy, Werner, Dubédat, Lawler, Kozdron, Bauer, Bernard, Kytola,
Sheffield, Miller, Wu, Peltola, Beffara, etc. The existence and
uniqueness are obtained when x € (0, 4) (see next slide).

When k = 0, multichordal SLEy is naturally defined as a geodesic
multichord. We will give a proof for the existence later.



Multichordal SLE,.: Radon-Nikodym derivatives

Multichordal SLE can be obtained by weighting n independent SLE,.

)
C =
exp (@mD(VM'-wVH)) ) ‘EDV K ¢ S
where 3 8)(6 ) ” CCC °)
K — — K
C('%) — 2 ~rk—0+ _;7
and mp(v1,...,72) > 0 Is expressed in terms of the Brownian loop

measure introduced by Lawler, Schramm, and Werner.

We have, mp(y) = 0 if n =1and myp is conformally invariant.

@q( Rduods | )



Geodesic multichord Multiple SLE

We consider D = H.

Theorem

Let (m,--- ,nn) be a geodesic multichord in X, (H; Xq,...,Xan). The
union of n;s, its complex conjugate, and the real line is the real locus
of a rational function of degree n + 1 with critical points {xq, ..., Xan}.

—
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Catalan number

? = D*:L\ ) <\ ‘Q\a&
E 76"(-‘”‘“??/&5(\—@ '—PO\TW\M,W\ (n ) . 0:P

¢ \ cP +d&
Theorem (Goldberg, Adv. Math. '91 q]%” 1P e &, ¢ pra®

Let zy,...,Zo, be 2n distinct complex numbers. There are at most C,
rational functions of degree n + 1 with critical points zy, ...,z Up to
PSL(2,C) post-composition (conformal automorphisms of C).

Assuming the existence of geodesic multichord in Xy (H; Xq, . .., Xn):
/ 1
Corollary >0 ) =P Q-QAY

If all critical points of a rational function are real, then it is a real
rational function up to PSL(2,C) post-composition.

This result is first proved by [Eremenko-Gabrielov, Annals '02].

Ex?‘o\UAUL 'S 3.\\/(»4 \vz o vy f"“\ Tor MW\HCJVOP&\W\
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Multichordal Loewner potential

Let 7 := (m,...,7n). The Loewner potential of 7 is given by ﬁ\\fows

re\ﬁ{'\
- 1 n /(J '(fbuv)f bd
Ho(7) ::ﬁz;l(% + mp (¥ ——ZlogPDxa Kb, h
j:
\5 N'UL’FW"W\G\
where Ppy y IS the Poisson excursion Rernel, defined via Nb dfA

Poxy = 1¢" ()||0" (V) IPr:o(x), o) and  Pgyy =y — X7,

and where ¢: D — H is a conformal map.

When n =1,
T 1

Ho(y) = E/D(V) A 108 Pp.q.b-

Minimized  for fixed  (D,0) \7 hy\mom qeedasic.



Properties of potential

Lemma

The multichord % has finite potential in D if and only if Ip(~;) < oo for
allje{1,...,n} and all v, ...,v, are pairwise disjoint.

Lemma

If Hp(7) < oo, then there exists K € [1,00), depending only on Hp(7),
and a K-quasiconformal map ¢ such that v; = ¢(p;) for all
j€{1,...,n}, ¢(D) = D, and ¢ extends continuously to D and equals

the identity function on 9D.

12



Properties of potential, cont’d

2 Lemma (Cascade relation of H)
) ' Foreach j e {1,...,n}, we have
Za,
Ho(7) = Hp (%) + Holn, - -5 %=1,%+1- -5 ).
Corollary
Any minimizer of Hp in Xo(D; X1, ..., X2pn) IS @ geodesic multichord.

Using the quasiconformal map:

Corollary & s¥onuy

There exists a geodesic multichord 77 in X, (D; X1, ..., X2n).



Multichordal Loewner energy

We also define the minimal potential:

MS(X1,---,X2n) = min HD(V) :HD(W) > —00.
YEXa (DX, ..,X2n)

Note that the minimal potential depends on the marked points
X1,...,Xn € 0D as well as on the link pattern a.

The multichordal Loewner energy of 7 € X,(D; X1, ..., Xap) IS

() = 12(Hp(F) — ME(x1,. .., Xan)) = 0.

When n = 1, this energy coincides with the Loewner energy Ip.

14
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Assume D = D. We endow X, (D; X4, ..., Xan) With the product
topology induced from the Hausdorff metric.

Theorem

The family of laws (P%).~o of the multichordal SLE, curves 7"
satisfies the following LDP in X, (D; X, ..., Xon) With good rate
function Ig:

Pma&: - LDP of S)\r\j\c SLE o+

° exp (QmD( )> ~ exp (—anW)) :

Y




Driving function of a geodesic multichord

Let 77 be the minimizer of Hy in Xy (H; X1, ..., X2n) and
U(X1, ce ,in) = 12M%(X1, ce ,in) = 12%H(ﬁ)

Theorem

Foreachj e {1,...,n}, the Loewner driving function W of the chord
n; from Xq; tO Xp, and the time evolutions V{t = g¢(x;) of the other
marked points satisfy the differential equations

i+1
OWe = =0 UV, VI W, VTV, Wy = Xa,
. ) .
oVl = ———, Vi =x;, fori#a;,
Ve= v, 0 =X 7 qj

for 0 <t < T, where T is the lifetime of the solution and (g¢)tefo,n IS
the Loewner flow generated by .
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Semi-classical limit of BPZ equations

Recall that U := 12M§. Let Z,(H; X4, ..., Xan; k) be the partition
function of multiple SLE,, in X (H; X1, ..., Xon).

Theorem

We have U = lim,_,o —x log Z, (k). For each j € {1,...,2n}, we have
1(a-u(x X)) =Y ‘ OU (X Xon) =) 5
p) J Ty« 5A2n Xj_XjI g oo gazm)) — (Xi_Xj)Z'

i i
- It has been pointed out by Bauer-Bernard-Kytola.

- This equation does not depend on . We may wonder how many
solutions are there, and what do they represent.

- Qur proof Is deterministic, by analysing directly the minimal
potential.

- Can one relate U to the associated rational functions more
quantitatively?



Identity with Loewner potential

O m

For any smooth multichord 7 in a bounded smooth domain D, we
have

Hp(7) = logdet: Ap — Z logdetcAc + nA,
C

where the sum is taken over all connected components C of D\ |; v,
and X € R s a universal constant.

We use results on det¢ A for curvilinear domains (piecewise smooth
boundary allowing corners) [Nursultanov-Rowlett-Sher, '19].

The relation between logdet:A and SLE was observed by Dubédat, Friedrich,
Konstevich, Suhov, etc.



* Loeny e il S“:'aff ..... e

EMraxo el \Wa ’Eﬂ“m SLE n’/‘fml"'*g

* Mulbdodel [eewne it A O

ﬂw\h‘f\t SLE,  amd rwhonad fw,\ﬂ'ms
M\/\.lﬁ \e SLEM \Mﬂc denphons
6V z UI oo

]93 (MAA axr FRCIWN






