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QFT ORIGINS

M. J. Bowick, S. G.Rajeev, String theory as the Kähler geometry of loop space,
Phys. Rev. Lett., 1987.

Kähler geometry of the loops on space-time (Minkowski space) de-
scribes bosonic string theory

Goal find a geometric and nonperturbative formulation similar to the
Riemannian geometry of space-time in general relativity used
to describe gravity

Geometry =⇒ a nonlinear equation of motion for the field similarly to
Einstein’s equations, vanishing of a generalization of the Ricci
tensor

Virasoro group: physical string amplitudes are independent of parametriza-
tion, invariant under the group of diffeomorphisms of the circle
Diff

(
S1
)

S1 pure rotations do not change the complex structure



M the space of all complex structures of the loops in the Minkowski
space transformed into each other by Diff

(
S1
)

are identified

with M = Diff
(
S1
)
/S1

This manifold thus plays a crucial role in string theory: the space M param-
eterizes vacuum states for Faddeev-Popov ghosts in the string field theory

B. Zumino, The geometry of the Virasoro group for physicists, the NATO
Advanced Studies Institute Summer School on Particle Physics, the NATO,
1987

D. Freed, The geometry of loop groups, J. Differential geometry, 1988



CONNECTION TO THE UNIVERSAL

TEICHMÜLLER SPACE

M as a dense complex submanifold of the universal Teichmüller
space T (1) of compact Riemann spaces of genus g > 1

Siegel disk a holomorphic map of T (1) into the infinite-dimensional Siegel
disk (Nag-Sullivan)

T (1) an infinite-dimensional complex Banach manifold

M an infinite-dimensional complex Fréchet manifold with a natural
Kähler metric



The Ricci tensor for the space M is related to the problem of constructing a
reparameterization-invariant vacuum for Faddeev-Popov ghosts.

D.K.Hong, and S.G. Rajeev, Universal Teichmüller space and Diff
(
S1
)
/S1,

Comm. Math. Phys., 1991

M. J. Bowick, and S.G. Rajeev, The holomorphic geometry of closed bosonic
string theory and Diff

(
S1
)
/S1, Nuclear Phys. B. 1987

A. A. Kirillov, 1987

A. A. Kirillov and D. V. Yur’ev, Kähler geometry of the infinite-dimensional
homogeneous space M = Diff+(S1)/Rot(S1), 1987

A. D. Popov, A. G. Sergeev, Symplectic twistors and geometric quantization
of strings, 1994



RIEMANNIAN GEOMETRY OF DIFF
(
S1
)
/S1

Diff
(
S1
)

smooth orientation-preserving diffeomorphisms of S1

diff
(
S1
)

ϕ (θ) d
dθ, where ϕ is a smooth periodic function

{fk, gk} fk = sin(kθ) ddt, gk = cos(kθ) ddθ
orthogonal basis of the Lie algebra diff

(
S1
)

diff0
(
S1
) {

ϕ(θ) ddθ ∈ diff
(
S1
)
,

2π∫
0
ϕ (θ) dθ = 0

}

J Jfk = fk, Jgk = −gk, an almost complex structure on
Diff

(
S1
)
/S1



ωc,h(f, g)
2π∫
0

(
(2h− c

12)f ′(θ)− c
12f

(3)(θ)
)
g(θ)dθ

2π

a cocycle on diff
(
S1
)

B(f, g) ωc,h(f, Jg) = ωc,h(g, fg), an inner product on diff
(
S1
)

∇ the covariant derivative determined by the inner productB(f, g).

f =
∞∑
k=1

(akfk + bkgk) ∈ diff0

(
S1
)

ωc,h(f, Jf) =
∞∑
k=1

1

2

(
hk +

c

12

(
k3 − k

)) (
a2
k + b2

k

)
fk

αk
,
gk

αk
k = 1, 2, ...



Theorem.
• The torsion of the almost complex structure J vanishes on diff0

(
S1
)

;

• if Q be the tensor field of type (1, 2) defined by

4Q(x, y) = (∇JyJ)x+ J((∇yJ)x) + 2J((∇xJ)y),

then ∇̃xy = ∇xy − Q(x, y) can be extended to a bilinear torsion-free
connection on mC = diff0

(
S1
)
C.

The curvature tensor for x, y ∈ diff
(
S1
)
C

R̃xy = ∇̃x∇̃y − ∇̃y∇̃x − ∇̃[x,y]mC
− ad([x, y]Cf0

);

The Ricci tensor Ric(x, y) is the trace of the map z 7→ R̃zxy.



An orthonormal basis of mC

Ln = fn + ign, n > 0,

Ln = f−n − ig−n, n < 0.

Theorem. The only non-zero components of the Ricci tensor are

Ric(Ln,L−n) = −
13n3 − n

6
, n ∈ Z, n 6= 0.

• The parameters c and h do not appear in the Ricci curvature

• the Ricci tensor for the original covariant derivative ∇ diverges

• ∇̃ is the Levi-Civita covariant derivative, that is, it is metric compatible and
torsion-free, but it is not a Hilbert-Schmidt operator

M. Gordina, P.Lescot 2006



HEAT KERNEL MEASURES ON DIFF
(
S1
)
/S1

(H.Airault, P. Malliavin, S. Fang, A. Thalmaier, M. Wu)

• Represent Diff
(
S1
)

as a certain space of univalent functions, and then as
the infinite-dimensional group SpHS

• construct the Brownian motion on SpHS as the solution to the stochastic
differential equation

dGt=
1
2

∞∑
j=1

ξ2
jGtdt+ dWtGt

with Qeij = ri+jeij, 0 < r < 1.

• this choice of renormalization forces the Brownian motion Gt to live in the
group SpHS, but it also changes the geometry of the group H.Airault, P.
Malliavin



• H3/2 metric forces the Brownian motion to live in Hölderian homeomor-
phisms of S1 P. Malliavin, S. Fang

αk = hk +
c

12

(
k3 − k

)
∼ k3

• a stronger metric forces the Brownian motion to live in Diff
(
S1
)
/S1

M. Wu 2011
rapidly decreasing scaling α (−k) = α (k)

lim
k→±∞

|k|mαk = 0 for any m ∈ N.



HILBERT-SCHMIDT GROUPS

B(H) bounded linear operators on a complex Hilbert space H .

G=GL(H) invertible elements of B(H).

Q a bounded linear symmetric nonnegative operator on HS.

HS Hilbert-Schmidt operators on H with the inner product
(A,B)HS = TrB∗A.

g = gCM ⊆HS an infinite-dimensional Lie algebra with a Hermitian inner
product (·, ·), |A|g = |Q−1/2A|HS.



GCM ⊆GL(H)Cameron-Martin group {x∈GL(H), d(x, I)<∞}

d(x, y) the Riemannian distance induced by | · |

d(x, y) = inf
g(0)=x
g(1)=y

1∫
0
|g(s)−1g′(s)|gds



HS as infinite matrices

HS= matrices {aij} such that
∑
i,j
|aij|2 <∞.

eij=

j

i


. . . . . . . .
. . . 1 . . .
. . . . . . . .
. . . . . . . .

 , Qeij=λijeij, λij > 0.

ξij=
√
λijeij.

Q is a trace class operator⇐⇒
∑
i,j
λij <∞.

For example, λij = ri+j, 0<r<1.



(i) The Hilbert-Schmidt general group

GLHS=GL(H)
⋂

(I +HS),

Lie algebra glHS=HS, gCM = Q1/2HS.

(ii) The Hilbert-Schmidt orthogonal group SOHS is the connected
component of

{B : B − I ∈ HS, BTB=BBT=I}.

Lie algebra soHS={A : A ∈ HS, AT=−A},

gCM = Q1/2soHS.



(iii) The Hilbert-Schmidt symplectic group

SpHS={X : X − I ∈ HS, XTJX=J}, where

J=

(
0 −I
I 0

)
.

Lie algebra spHS= {X :X ∈HS, XTJ+JX=0},

gCM = Q1/2spHS.



BROWNIAN MOTION:
MANG WU’S CONSTRUCTION

sin (kθ)

αk
,
cos (kθ)

αk
k = 1, 2, ...

αk = 1 orthonormal basis for L2
(
S1
)

α2
k

1
2

(
hk + c

12

(
k3 − k

))
orthonormal basis on diff

(
S1
)

with re-
spect to the inner product ωc,h(f, Jg) = ωc,h(g, fg)

Hα Hilbert space with the orthonormal basis
sin(kθ)
αk

,
cos(kθ)
αk

α determines the covariance of the Brownian motion Wt



diff
(
S1
)

Fréchet space

diff
(
S1
)

=
⋃
α

Hα =
⋂
n

Wn,2
(
S1
)

=
⋂
n

Wn,∞
(
S1
)

Stochastic differential equation on Diff
(
S1
)

to define a Brownian motion in

the group Diff
(
S1
)

Composition is the group operation on Diff
(
S1
)

=⇒ two actions of the

group Diff
(
S1
)

on the Lie algebra diff
(
S1
)

σ (g) f = f ◦ g or σ (g) f = g′ · f

f ∈ diff
(
S1
)
, g ∈ Diff

(
S1
)



Diff
(
S1
)
⊆ id + diff

(
S1
)

affine space

dXt = σ (id +Xt) dWt

σ is locally Lipschitz

Theorem. (Mang Wu 2011) There exists a unique solution Xt with a.s.
continuous sample paths. Furthermore, the solution is non-explosive and lives
in Diff

(
S1
)

.



KÄHLERIAN STRUCTURE ON
LOOP GROUPS

• Loop group LG = {g : [0, 1]→ G, g(0) = g(1) = e}
H0 = {h : [0, 1]→ g, h(0) = h(1) = 0} with ‖h′‖L2 <∞

• the Riemannian structure on LG can be described in terms of a good basis
D. Freed, B.Driver

• an almost complex structure onLG A. Pressley, then the Riemannian tensor
can be computed using a Kählerian metric on LG
I.Shigekawa, S. Taniguchi

• the Ricci is defined as Ric = dd∗ + d∗d−∇∗∇.
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