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Random fields and Quantum fields

Random fields:

Probability measure on infinite
dimensional space of scalar
functions ϕ : Rn→ R.

Usually of the form

EF =
1

ZA

∫
F (ϕ)e−A(ϕ)Dϕ

Important observables:
F = ∏i ϕ(yi ), F = eϕ(y).

Quantum fields:

Hilbert space H with a Fock
space structure H =

⊕
∞
n=0Hn.

Family of self-adjoint operators
Φ(t,−→x ) : H →H ,
(t,−→x ) ∈ R×Rd .

Distinguished vector Ω ∈H
called the vacuum.

Important observables: inner
products 〈Ω,∏i Φ(ti ,

−→xi )Ω〉H .

On top of these we will need regularity, symmetry and ”positivity”
properties.
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Imaginary time

A story in physics roughly says that the imaginary time inner products

〈Ω,
k

∏
j=1

Φ(−itj ,−→xj )Ω〉 =: S((t1,
−→x1), . . . ,(tk ,

−→xk ))

seem to be correlation functions of a Gibbs-type probability measure i.e.

S((t1,
−→x1), . . . ,(tk ,

−→xk )) =
1

ZA

∫ k

∏
j=1

ϕ(tj ,
−→xj )e−A(ϕ)Dϕ

for some Action Functional A

A(ϕ) =
∫
R1+d

(
(ϕ̇(t,−→x )2 + |∇ϕ(t,−→x )|2 +V (ϕ(t,−→x ))

)
dt dd−→x

Can you go in the other direction? Can you analytically continue
probabilistic correlation functions from real time to imaginary time?
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Axioms for field theories

Random fields:
Random field ϕ with probability
distribution µ

Euclidean symmetry:
Eeϕ(x) = Eeϕ(Tx), where T can
be rotation, translation,
reflection

Reflection positivity

Regularity: E∏i ϕ(yi ) is a
Tempered distribution + more

Cluster property: ϕ(y1)
becomes independent of ϕ(y2)
as |y1−y2| → ∞.

Quantum fields:

Hilbert space H and a unique
vacuum vector Ω ∈H .

Self-adjoint field operators
Φ(t,−→x ) : H →H s.t.
(t,−→x ) 7→ 〈ψ1,Φ(t,−→x )ψ2〉H is a
Tempered Distribution.

Poincare symmetry (Lorentz +
translations)

Causality and
”Energy-momentum relation”:
E 2−|−→p |2 ≥ 0

The Quantum Field axioms were introduced by Lars Gårding and Arthur
Wightman (published 1964).

The Random Field axioms were introduced by Konrad Osterwalder and
Robert Schrader (published 1973-1975)

Equivalence of the axioms proven by Osterwalder and Schrader in 1975.
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Axioms for random fields: Reflection positivity

Let ϕ be a random field with probability distribution µ supported in
Schwartz distributions S ′(Rn) = S ′(R×Rn−1).

E := L2(S ′(Rn),dµ).

E± := L2(S ′(R±×Rn−1)dµ), the subspace consisting observables
supported in S ′(R±×Rn−1).
Intuitively: E+ consists of the observables F that depend on ϕ(t,−→x )
only for t > 0.

Θ : E+→ E− by (ΘF )(ϕ) = F (θϕ) with θϕ(t,−→x ) = ϕ(−t,−→x ).

〈F ,G 〉E+ :=
∫
F (ϕ)(ΘG )(ϕ)dµ(ϕ) = EF (ϕ)(ΘG )(ϕ).

1 Reflection Positivity : For all F ∈ E+ we have 〈F ,F 〉E+ ≥ 0.

Suffices to consider F belonging to

A+ := {F (ϕ) =
N

∑
k=1

cke
i(ϕ,fk ) | ck ∈ C, fk ∈ C∞

0 (R+×Rn−1)} ⊂ E+.

(ϕ, fk) :=
∫

ϕ(y)fk(y)dny .
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Axioms for random fields

Reflection Positivity: For all F ∈ E+ we have 〈F ,F 〉E ≥ 0.

Euclidean symmetry: µ is invariant under Euclidean symmetries:
Eeϕ(x) = Eeϕ(Tx), where T can be Rotation, Reflection, Translation.

Cluster property: Let (si ,
−→xi ) ∈ R×Rn−1

lim
t→∞

E
k

∏
i=1

ϕ(si − t,−→xi )
l

∏
j=k+1

ϕ(sj ,
−→xj ) = E

k

∏
i=1

ϕ(si ,
−→xi )E

l

∏
j=k+1

ϕ(sj ,
−→xj )

Regularity(*): The correlation functions

(y1, . . . ,yk) 7→ E
k

∏
i=1

ϕ(yi ) , yi ∈ Rn ,

are tempered distributions in the region of non-coinciding points
(yi 6= yj for i 6= j).
Also need an additional growth estimate when k → ∞ and when
s → 0.
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Axioms for random fields: Regularity

Regularity(*): The functions (y1, . . . ,yk) 7→ E∏
k
i=1 ϕ(yi ) are

tempered distributions.
OS showed that the following suffices: Denote
S2(y2−y1) = Eϕ(y1)ϕ(y2). Assume∣∣∣∣∫ S2(y)f (y)dny

∣∣∣∣≤ ‖f̃ ‖,
where ‖f̃ ‖ is a Schwartz norm of the Laplace transform of f .
Analogous bounds for higher order correlations Sk .
Not practical to work with!
OS also used something like∣∣ S2(s,−→x )

∣∣ ≤ C2

(
(1 + |−→x |)(1 + |s|)(1 + |s|−1)

)N2

i.e. S2 is tempered and has a power law divergence as s→ 0.
Analogous bounds for Sk with Ck ' (k!)p.
Glimm–Jaffe book: Bound for the Laplace transform∣∣∣Ee(ϕ,f )∣∣∣≤ e

c(‖f ‖L1+‖f ‖
p
Lp

)
, 1≤ p ≤ 2 .
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Constructing a Quantum field from a Random field

We are going to construct a Quantum field from a random Gaussian field.

We will choose n = 1, i.e. the random field lives on R×Rn−1 = R.

Leads to a quantum field in 1 time and 0 space dimensions.

The construction consists of

1 We start with a Gaussian field ϕ with a covariance kernel

G (t,s) = e−ω|t−s|

2ω
.

2 We show that the probability distribution µ of ϕ is Reflection Positive.

3 We then construct a Hilbert space H from a subspace of
L2(S ′(R),dµ).

4 We show that H is unitarily equivalent with L2(R,e−ωx2dx).

5 We show that the translation semigroup on L2(S ′(R),dµ) maps to a
translation semigroup on L2(R,e−ωx2dx) and compute its generator
(the Hamiltonian).

6 The resulting system will look like a Quantum Harmonic Oscillator.
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Reconstruction: The simplest example

We set n = 1 and µ a Gaussian measure on S ′(R) with covariance

G (t,s) =
e−ω|t−s|

2ω
, ω > 0 .

Note: This is the Green function of the operator −∂ 2
t + ω2. Thus

think of:

dµ(ϕ)' e−
1
2
∫

ϕ(t)(−∂ 2
t +ω2)ϕ(t)dtDϕ

We denote the Gaussian field given by this measure by ϕ ∈S ′(R).
Thus E[ϕ(t)ϕ(s)] =

∫
ϕ(t)ϕ(s)dµ(ϕ) = G (t,s).

Recall (ΘF )(ϕ) = F (θϕ), (θϕ)(t) = ϕ(−t). Reflection Positivity is
the condition:

E(ΘF )(ϕ)F (ϕ)≥ 0

where F ∈ L2(S ′(R+),dµ) and we can take F (ϕ) = e(ϕ,f ) with
f ∈S (R+).

Is µ Reflection Positive?
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Reflection Positivity for ϕ

Keep in mind: Eϕ(t)ϕ(s) = G (t,s) = e−ω|t−s|

2ω

Fact: For Gaussians the Reflection Positivity

E(ΘF )(ϕ)F (ϕ)≥ 0

is equivalent to ∫
(θ f )(t)f (s)G (t,s)dtds ≥ 0

for all f ∈S (R+).

We have:∫
(θ f )(t)f (s)G (t,s)dtds = 1

2ω

∫
f (−t)f (s)e−ω|t−s|dtds

= 1
2ω

∫
(−∞,0)

dt
∫
(0,∞)

ds f (−t)f (s)e−ω|t−s|dtds

= 1
2ω

∫
(−∞,0)

f (−t)eωtdt
∫
(0,∞)

f (s)e−ωsds

≥ 0 .
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Construction of the Hilbert space

We construct a Hilbert space out of

A+ := {
N

∑
k=1

cke
i(ϕ,fk ) | ck ∈ C, fk ∈ C∞

0 (R+)} ⊂ L2(S ′(R+),dµ)

Set

〈F ,G 〉A+ = E(ΘG )(ϕ)F (ϕ).

This is positive semidefinite 1 by Reflection Positivity!

The quotient A+/N , where N = {F ∈A+ | 〈F ,F 〉= 0}, is an inner
product space.

Then define H+ := completion of A+/N .

H+ is automatically a Hilbert space.
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Decomposition of ϕ

G (t,s) = e−ω|t−s|

2ω
, the Green function of (−∂ 2

t + ω2).

First we decompose the covariance kernel

G (t,s) = G+(t,s) +G−(t,s) +G0(t,s)

Set

G+(t,s) =
(
G (t,s)−G (t,−s)

)
1t,s≥0

G−(t,s) =
(
G (t,s)−G (t,−s)

)
1t,s≤0

Method of images! G± are the Dirichlet Green functions of
(−∂ 2

t + ω2) on R±.

G0 := G −G+−G−. Follows that G0(t,s) = e−ω(|t|+|s|)

2ω
.

G± are positive as operators:
∫
f (t)f (s)G±(t,s)dtds ≥ 0.

Clearly also G0 is positive.
=⇒ ϕ decomposes into independent parts ϕ = ϕ+ + ϕ−+ ϕ0.

Here ϕ0(t) = e−ω|t|x , x ∼N (0, 1
2ω

), so the probability distribution

µ0 of ϕ0 is
√

ω√
π
e−ωx2dx .
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Unitary equivalence with L2(R,e−ωx2dx)

ϕ decomposes into independent parts ϕ = ϕ+ + ϕ−+ ϕ0 with

Eϕ±(t)ϕ±(s) = G±(t,s) , Eϕ0(t)ϕ0(s) = G0(t,s) =
e−ω(|t|+|s|)

2ω

We have ϕ0(t) = e−ω|t|x with x ∼N (0, 1
2ω

).

Thus E0F1(ϕ0)F2(ϕ0) = 〈F1,F2〉L2(R,e−ωx2dx)
.

The decomposition implies

EF (ϕ) = E+E−E0F (ϕ+ + ϕ−+ ϕ0) .

Unitary equivalence with L2(R,e−ωx2dx):

〈F ,G 〉H+ = E(ΘG )(ϕ)F (ϕ)

= E+E−E0(ΘG )(ϕ−+ ϕ0)F (ϕ+ + ϕ0)

= E0

[
E−G (θ(ϕ−+ ϕ0))E+F (ϕ+ + ϕ0)

]
= E0

[
E+G (ϕ+ + ϕ0)E+F (ϕ+ + ϕ0)

]
= 〈E+G (ϕ+ + ·),E+F (ϕ0 + ·)〉

L2(R,e−ωx2dx)

We used θϕ−
law
= ϕ+ and θϕ0 = ϕ0.
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Unitary equivalence with L2(R,e−ωx2dx)

We got

〈F ,G 〉H+ = 〈E+G (ϕ+ + ·),E+F (ϕ0 + ·)〉
L2(R,e−ωx2dx)

Thus the map U : H+→ L2(R,e−ωx2dx) given by

(UF )(ϕ0) = E+F (ϕ+ + ϕ0)

is an isometry .

The range of U is dense:

Ue i(ϕ,f ) = e i(ϕ0,f )E+e
i(ϕ+,f ) = e i(ϕ0,f )e−

1
2E(ϕ+,f )

2

= e ix
∫
f (t)e−ωtdte−

1
2 (f ,G+f )

Thus range of U contains all vectors of the form e iαx , x ∼ µ0. This is
a dense set in L2(R,e−ωx2dx). U preserves inner product and has
dense range =⇒ U is unitary.

UH+ = L2(R,e−ωx2dx).
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Time translation semigroup

On H+ we can define the time translation

Tte
i(ϕ,f ) := e i(ϕ,ft) , ft(s) := f (s− t)

T (t) is self-adjoint:

〈T (t)e i(ϕ,f ),e i(ϕ,g)〉H+ = EΘ(e i(ϕ,ft))e i(ϕ,g)

= Ee−i(ϕ,θ ft)e i(ϕ,g)

= Ee−i(ϕ,(θ f )−t)e i(ϕ,g)

= Ee−i(ϕ,θ f )e i(ϕ,gt)

= 〈e i(ϕ,f ),T (t)e i(ϕ,g)〉H+
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Time translation semigroup

T (t) is a contraction:

‖T (t)F‖2 = 〈T (t)F ,T (t)F 〉= 〈F ,T (2t)F 〉 ≤ ‖F‖‖T (2t)F‖
=⇒ ‖T (t)F‖ ≤ ‖F‖1/2‖T (2t)F‖1/2

=⇒ ‖T (t)F‖ ≤ ‖F‖1/2+1/4‖T (4t)F‖1/4

=⇒ ‖T (t)F‖ ≤ ‖F‖1/2+...+1/2k‖T (2kt)F‖1/2k

Translation invariance implies

‖T (2nt)F‖2 = 〈F ,T (2n+1)F 〉= E(ΘF )T (2n+1t)F

≤ (E(ΘF )2)1/2(E(T (2n+1t)F )2)1/2

E(T (2n+1t)e i(ϕ,f ))2 = Ee2i(ϕ,f2n+1t) = Ee2i(ϕ,f ) = E(e i(ϕ,f ))2

Conclusion: ‖T (t)F‖H+ ≤ ‖F‖H+

Hille–Yosida: T (t) = e−tH where H is positive and self-adjoint
operator.
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Time translation on L2(R,e−ωx2dx)

e−tH : H+→H+,
U : H+→ L2(R,e−ωx2dx), U = E+

Time translation semigroup on L2(R,e−ωx2dx) by e−tH̃ := Ue−tHU−1

We want to compute e−tH̃Ue i(ϕ,f ).

e−tH̃Ue i(ϕ,f ) = Ue−tHe i(ϕ,f ) = Ue i(ϕ,ft) = e i(ϕ0,ft)E+e
i(ϕ+,ft)

= e ix
∫
ft(s)e

−ωsdse−
1
2 (ft ,G0ft)

What is essential is the functional dependence on x of the RHS.
Take F = e iϕ(0)α for α ∈ C. Then UF = e ixα . Now

e−tH̃Ue iϕ(0)α = Ue−tHe iϕ(0)α

= Ue iϕ(t)α

= e−
α2

2 G+(t,t)e iϕ0(t)α

= e−
α2

2 ( 1
2ω
− 1

2ω
e−2ωt)e ie

−ωtxα
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Time translation on L2(R,e−ωx2dx)

The Hamiltonian H̃ can now be evaluated

−H̃Ue iϕ(0)α =
d

dt

∣∣∣
t=0

e−tH̃Ue iϕ(0)α

=
d

dt

∣∣∣
t=0

e−
α2

2 ( 1
2ω
− 1

2ω
e−2ωt)e ie

−ωtxα

=
(
− α2

2
− ixαω

)
e−

α2

2ω Ue iϕ(0)α

= (−1
2

d2

dx2
−ωx d

dx )Ue iϕ(0)α

I.e. H̃ = 1
2

d2

dx2
+ ωx d

dx on L2(R,e−ωx2dx).

A unitary map V : L2(R,e−ωx2dx)→ L2(R,dx) is given by

(Vf )(x) = e−
1
2ωx2f (x). Then

V H̃V−1 =−1

2

d2

dx2
+

1

2
ω

2x2− 1

2
ω .

The Hamiltonian of the Quantum Harmonic Oscillator.
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Oscillator

We ended up with a Quantum mechanical system

H : L2(R)→ L2(R) ,

(Hf )(x) = (−1

2

d2

dx2
+

1

2
ω

2x2− 1

2
ω)f (x)

The vacuum state Ω ∈ L2(R) is the state satisfying HΩ = 0. The

solution is Ω(x) = (V 1)(x) = e−
1
2ωx2 .

What are the functions 〈Ω,∏i Φ(ti )Ω〉? We were supposed to have
something like

〈Ω,∏
j

Φ(−itj)Ω〉= E∏
j

ϕ0(tj)

Quantum field axioms also say that

Φ(t) = e itHΦ(0)e−itH

I.e. Φ(−it) = etHΦ(0)e−tH .
Here Φ(0) corresponds to the multiplication operator
x : L2(R)→ L2(R), (xf )(x) = xf (x).
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Two-point function

Φ(−it) = etHΦ(0)e−tH .

Φ(0) is given by x : L2(R)→ L2(R), (xf )(x) = xf (x).

Then for s > t > 0

〈Ω,Φ(−it)Φ(−is)Ω〉L2(R) = 〈Ω,e−tH Φ(0)e−(s−t)HΦ(0)esH Ω〉L2(R)
= 〈Ω,Φ(0)e−(s−t)H Φ(0)Ω〉L2(R)
= E0ϕ0(0)ϕ0(s− t)

= G0(s, t)

=
e−ω(s+t)

2ω
.
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End result

We started with a Gaussian measure with covariance operator

G = (−∂ 2
t + ω)−1 and Covariance Kernel G (t,s) = e−ω|t−s|)

2ω
.

Using Reflection Positivity we got the Hilbert space

H+
U7→ L2(R,e−ωx2dx)

V7→ L2(R,dx) and on L2(R,dx) we got the
Hamiltonian

H =−1

2

d2

dx2
+

1

2
ω

2x2− 1

2
ω

A vacuum state Ω = e−ωx2

Imaginary time field operator Φ(−it) = etH Φ(0)e−tH with Φ(0) the
multiplication operator f (x) 7→ xf (x) on L2(R).

Imaginary time Wightman function
〈Ω,Φ(−it)Φ(−is)Ω〉L2(R) = G0(t,s).

How to get real time Wightman functions?
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Analytic continuation & more

Random fields:
Random field ϕ with probability
distribution µ

Euclidean symmetry

Reflection positivity

Regularity

Cluster property

Quantum fields:

Hilbert space H and a vacuum
Ω ∈H .

Self-adjoint field operators
Φ(t,−→x ) : H →H s.t.
(t,−→x ) 7→ 〈ψ1,Φ(t,−→x )ψ2〉H is a
Tempered Distribution.

Poincare symmetry

Causality and E 2−|−→p |2 ≥ 0

Random to Quantum: S2(t1− t2,
−→x1 −−→x2) := Eϕ(t1,

−→x1)ϕ(t2,
−→
x2)

1 Reflection positivity gives a Hilbert space and e−tH . The semigroup
extends to e(−t+is)H for t ≥ 0 and this semigroup is holomorphic for
t > 0.

2 This yields an analytic continuation of S2(τ,−→x ) to R(τ) > 0.

3 This + regularity =⇒ S2(is,−→x ) is a tempered distribution and the
support of its Fourier transform belongs to the ”future light cone”.

4 The regularity assumptions ensure that this works also for Sk , k > 2.

5 Cluster property =⇒ uniqueness of vacuum.
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Free fields in higher dimensions

Gaussian field ϕ on Rn with a covariance operator (−∆ +m2)−1.

We have G (y1,y2) = G (|y1−y2|) and the Fourier transform satisfies

G (y1,y2) =
∫

1

p2 +m2
e ip·(y1−y2)

dnp

(2π)n

After using the rotational symmetry and computing, we get

G (y1,y2) =
∫

e−|y1−y2|
√
|k|2+m2

2
√
|k |2 +m2

dn−1k

(2π)n−1

Compare with G (t,s) = e−ω|t−s|

2ω

Now ϕ = ϕ+ + ϕ−+ ϕ0 Where ϕ± are Dirichlet free fields with mass
m2 on R±×Rn−1.

When m = 0 the time-zero field ϕ0 is the Harmonic Extension of
ϕ|t=0 to Rn.

Leads to a Hilbert space with a Hamiltonian of an infinite collection
of independent quantum harmonic oscillators.
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