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a little fact:
1. Probability measure: µ = 1

Z e−V (x)dx
2. Stochastic process: dXt = −1

2V ′(X )dt + dBt

µ is invariant under Xt

quantum field theory
1. Functional integral formulation: Prob(Φ) ∝ e−S(Φ).
2. Stochastic quantization formulation: ∂tΦ = − δS

δΦ + ξ
ξ: space-time white noise

Examples:
1. GFF: S(Φ) =

´ 1
2 |∇Φ|2 dx ⇒ ∂tΦ = ∆Φ + ξ

2. S(Φ) =
´ 1

2 |∇Φ|2 + 1
4Φ4 dx ⇒ ∂tΦ = ∆Φ− Φ3 + ξ
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SPDE: one slide tutorial
Linear: ∂tΦ = ∆Φ + ξ. Theorem: ξ ∈ C− d+2

2 − and Φ ∈ C−
d−2
2 −

Corollary: d ≥ 2, Φ is distribution. (GFF is invariant.)

Nonlinear: ∂tu = ∆u + u2 + ξ in d = 2. FORMAL!

∂tuε = ∆uε + u2
ε−? + ξε

Let uε = Φε + vε. (Recall Φ ∈ C0−)

∂tvε = ∆vε + Φ2
ε−? + 2Φεvε + v2

ε

1. Φ2
ε − E(Φ2

ε) converges in C0−.
2. Solve v by classical PDE: v ∈ C2−.
3. Theorem: renormalized equ has a limit solution u = Φ + v .
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Definition of Yang-Mills model

x

y
Uxyz

w

p

U(p) = Uxy UyzUzw Uwx

Prob(U) = e
∑

p S(U(p))dσHaar/Z
(S is real-valued, S(yxy−1) = S(x))

U ∼ eεA

A =
∑d

i=1 Aidxi
(each Ai value in Lie algebra i.e. skew-Hermitian)

FA = dA + [A,A]

Prob(A) ∝ e−‖FA‖2

Gauge symmetry:
1. Lattice measure is invariant Uxy 7→ g(x)Uxy g(y)−1
2. In continuum formally invariant A 7→ gAg−1 − gdg−1
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Wilson loop observables
Lattice path γ, holonomy holγ =

∏
{x ,y}∈γ Uxy .

Loop γ, Wilson loop Wγ = Tr(holγ).

Smooth path γ : [0, 1]→ Rd , holγ = F (1) where dF = F · A(dγ)
Smooth loop, Wγ = Tr(holγ).

Wγ is gauge invariant.
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Challenges of YM:
1. make sense measure or observables in continuum

(related: gauge fixing, Gribov ambiguity, ghosts etc.)
2. large scale behavior:

i.e. construct measure on whole Rd , decay of loop correlations
(related: confinement, area law, mass gap..)

3. many other problems, e.g. large N.
Earlier works in continuum:
[Gross, Driver, Sengupta, Levy..] 2d YM observables.
Many results in abelian cases (80s-00s).
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Our results in d = 2 (and d = 3 in progress):
We construct stochastic quantization / Langevin dynamic of YM

∂tA = −d∗AFA − dAd∗A + ξ

for which e−‖FA‖2 is formally invariant; more explicitly

∂tAi = ∆Ai +
[
Aj , 2∂jAi − ∂iAj + [Aj ,Ai ]

]
+ ξi

In particular
1. We built the orbit space {A}/G
2. We define the Markov process.
3. Gauge invariance of this process.

Stochastic: [Bern-Halpern-Sadun-Taubes’87] (physics)

Deterministic: Donaldson, Rade, Waldron, S.J.Oh etc.
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Space of orbits (state space) “{A}/G”
Questions to address:
? Want holonomies, but, distributions can’t integrate along curves.
(However, 2d GFF ∈ C0− can.)
? Is “{A}/G” reasonable (e.g. Polish) for measure theory?

Theorem. Let d = 2, α = 1−
We constructed a space Ω1

α of (Lie algebra valued) 1-forms s.t.
1. For each A ∈ Ω1

α, one can define holγ(A)
2.

C
α
2︸︷︷︸

continuous

⊂ Ω1
α ⊂ Cα−1︸ ︷︷ ︸

distributions

3. Ω1
α/Gα is Polish

4. GFF ∈ Ω1
α
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Sketch of proof.
1. Start with functions from {line segments} to R.

‖A‖α−gr = sup
`

|A(`)|
|`|α

(α = 1−)

2. Changes are small when slightly turning directions

‖A‖α−vee = sup
`,¯̀

|A(`)− A(¯̀)|
Area(`, ¯̀)α2

3. Ω1
α = closure of smooth 1-forms under above two norms.
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Sketch of proof (continued).

4. For a triangle P, one has |A(∂P)| ≤ ‖A‖αArea(P)α2

5. Approximate holonomy along smooth γ by line segments

6. ∂tA = ∆A + ξ and GFF in Ω1
α (rebuild Schauder + Kolmogorov)
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SPDE (linear and trivial example)

2D stochastic abelian YM: A = (A1,A2), FA = dA and d = curl.

S(A) =
ˆ

T2
(dA)2dx

∂tA = −d∗dA + ξ

Gauge invariance: Ã(t, x) := A(t, x) + df (x) satisfies same equation.
Problem: not elliptic. (Recall ∆ = −d∗d−dd∗.)

“Donaldson-DeTurck trick”:
A calculation: Let ∂tB = ∆B + ξ and At := Bt +

´ t
0 dd∗Bsds

Then, ∂tA = ∆B + ξ + dd∗B = −d∗dB + ξ = −d∗dA + ξ.
• time-dependent gauge transformations.
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SPDE: 1st try to nonlinear case
[Shen’18] abelian YM couple Higgs:

´
T2(CurlA)2 + |DAΦ|2 dx

1. Discretize (by lattice gauge theory to preserve gauge symmetry)
2. Renormalize (without breaking gauge symmetry)
3. Take limit (the gauge invariant dynamic)

(DAε
j Φε)(x) = ε−1

(
e−iελAε(x ,x+ej )Φε(x + ej)− Φε(x)

)


∂tAε1(e) = ∇ε2∇ε2Aε1(e)−∇ε1∇ε2Aε2(e)
+ε−1λ Im

(
e−iελAε

1 (e)Φε(e+)Φ̄ε(e−)
)

+ ξε1 (e)

∂t Φε(x) = ε−2
(∑

e e−iελAε(x,x+e)Φε(x + e)− 4Φε(x)
)

+ ζε(x)

Theorem [S.’18]: (Aε,Φε) converges as ε→ 0.
No renormalization for A! (Φ needs a −CεΦε renormalization)
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Non-abelian case
[Chandra-Chevyrev-Hairer-S. ’20] Let ξε := ξ ∗ ρε (smooth mollification!)

∂tAεµ = ∆Aεµ +
d∑
ν=1

[Aεν , 2∂νAεµ − ∂µAεν + [Aεν ,Aεµ]]−CεAεµ + ξεµ

where Cε ∼ 1
ε in d = 3 and Cε ∼ O(1) in d = 2.

Gauge invariance lost for ε > 0. For gauge transformation g ,

ξε 7→ gξεg−1 and CεAε 7→ Cε(Aε − gdg−1)

Theorem. ∃ unique choice of Cε, s.t. limit is gauge invariant
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∂tAε = −d∗AεFAε − dAεd∗Aε + ξε − CεAε init.cond. Aε(0)

If gε are (time-dependent) gauge transformations solving

g−1ε ∂tgε = −D∗Aε(g−1ε dgε) init.cond. gε(0)

then Bε(t) := gε(t) ◦ Aε(t) satisfies

∂tBε = −d∗BεFBε − dBεd∗Bε + gεξεg−1ε − Cε(Bε − gεdg−1ε )

with initial condition Bε(0) = gε(0) ◦ Aε(0).

Key idea: Calculate renormalization for gεξεg−1ε . Conclusion: ∃1
choice Cε, s.t. in the limit, (B,B(0)) law= (A,B(0)).
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Hidden details...
1. Positive existing time (as a process on the orbit space)

2. 3D: holγ(FδA) (Fδ is deterministic YM flow)
Orbit space defined by A ∼ Ā iff FδA ∼ FδĀ for some δ > 0
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Hidden details...
3. New framework of regularity structures

Goal: vector-space-valued SPDEs coordinate-independently.
Use category theory to transplant Hairer’s original framework
to new setting.

4. Couple gauge fields with other fields
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Unclear at the moment...
– couple fermionic fields
– manifolds rather than torus.
– construct long time / full space solutions.
– correlation decay / mass gap etc.
– 4D.

Thank you for your attention!
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