## Stochastic quantization and Yang-Mills

## Hao Shen (University of Wisconsin - Madison)

Joint with A. Chandra, I. Chevyrev, M. Hairer

November 6, 2020

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Page 1/17

#### a little fact:

- 1. Probability measure:  $\mu = \frac{1}{Z}e^{-V(x)}dx$
- 2. Stochastic process:  $dX_t = -\frac{1}{2}V'(X)dt + dB_t$

 $\mu$  is invariant under  $X_t$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

#### quantum field theory

- 1. Functional integral formulation:  $Prob(\Phi) \propto e^{-S(\Phi)}$ .
- 2. Stochastic quantization formulation:  $\partial_t \Phi = -\frac{\delta S}{\delta \Phi} + \xi$

 $\xi$ : space-time white noise

Examples: 1. GFF:  $S(\Phi) = \int \frac{1}{2} |\nabla \Phi|^2 dx \qquad \Rightarrow \partial_t \Phi = \Delta \Phi + \xi$ 2.  $S(\Phi) = \int \frac{1}{2} |\nabla \Phi|^2 + \frac{1}{4} \Phi^4 dx \qquad \Rightarrow \partial_t \Phi = \Delta \Phi - \Phi^3 + \xi$  SPDE: one slide tutorial <u>Linear</u>:  $\partial_t \Phi = \Delta \Phi + \xi$ . Theorem:  $\xi \in C^{-\frac{d+2}{2}-}$  and  $\Phi \in C^{-\frac{d-2}{2}-}$ Corollary:  $d \ge 2$ ,  $\Phi$  is distribution. (GFF is invariant.)

**<u>Nonlinear</u>**:  $\partial_t u = \Delta u + u^2 + \xi$  in d = 2. FORMAL!

$$\partial_t u_{\varepsilon} = \Delta u_{\varepsilon} + u_{\varepsilon}^2 - ? + \xi_{\varepsilon}$$

Let  $u_{\varepsilon} = \Phi_{\varepsilon} + v_{\varepsilon}$ . (Recall  $\Phi \in C^{0-}$ )

$$\partial_t v_{\varepsilon} = \Delta v_{\varepsilon} + \Phi_{\varepsilon}^2 - ? + 2\Phi_{\varepsilon} v_{\varepsilon} + v_{\varepsilon}^2$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Φ<sup>2</sup><sub>ε</sub> - E(Φ<sup>2</sup><sub>ε</sub>) converges in C<sup>0-</sup>.
 Solve v by classical PDE: v ∈ C<sup>2-</sup>.
 Theorem: renormalized equ has a limit solution u = Φ + v.

#### Definition of Yang-Mills model



$$U\sim e^{arepsilon A}$$

$$A = \sum_{i=1}^{d} A_i dx_i$$

(each A<sub>i</sub> value in Lie algebra i.e. skew-Hermitian)

$$F_A = dA + [A, A]$$

$$\operatorname{Prob}(A) \propto e^{-\|F_A\|^2}$$

Gauge symmetry:

- 1. Lattice measure is invariant  $U_{xy} \mapsto g(x)U_{xy}g(y)^{-1}$
- 2. In continuum formally invariant  $A \mapsto gAg^{-1} gdg^{-1}$

#### Wilson loop observables

Lattice path  $\gamma$ , holonomy hol $_{\gamma} = \prod_{\{x,y\} \in \gamma} U_{xy}$ . Loop  $\gamma$ , Wilson loop  $W_{\gamma} = Tr(hol_{\gamma})$ .

Smooth path  $\gamma : [0,1] \to \mathbf{R}^d$ ,  $hol_{\gamma} = F(1)$  where  $dF = F \cdot A(d\gamma)$ Smooth loop,  $W_{\gamma} = Tr(hol_{\gamma})$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $W_{\gamma}$  is gauge invariant.

## Challenges of YM:

- 1. make sense measure or observables in continuum (related: gauge fixing, Gribov ambiguity, ghosts etc.)
- 2. large scale behavior:

i.e. construct measure on whole  $\mathbf{R}^d$ , decay of loop correlations (related: confinement, area law, mass gap..)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

3. many other problems, e.g. large N.

## Earlier works in continuum:

[Gross, Driver, Sengupta, Levy..] 2d YM observables. Many results in abelian cases (80s-00s). Our results in d = 2 (and d = 3 in progress):

We construct stochastic quantization / Langevin dynamic of YM

$$\partial_t A = -d_A^* F_A - d_A d^* A + \xi$$

for which  $e^{-\|F_A\|^2}$  is formally invariant; more explicitly

$$\partial_t A_i = \Delta A_i + [A_j, 2\partial_j A_i - \partial_i A_j + [A_j, A_i]] + \xi_i$$

In particular

- 1. We built the orbit space  $\{A\}/\mathcal{G}$
- 2. We define the Markov process.
- 3. Gauge invariance of this process.

Stochastic: [Bern-Halpern-Sadun-Taubes'87] (physics)

Deterministic: Donaldson, Rade, Waldron, S.J.Oh etc.



A D > A P > A D > A D >

# Space of orbits (state space) " $\{A\}/G$ " Questions to address:

? Want holonomies, but, distributions can't integrate along curves. (However, 2d GFF  $\in \mathcal{C}^{0-}$  can.)

? Is " $\{A\}/\mathcal{G}$ " reasonable (e.g. Polish) for measure theory?

Theorem. Let d = 2,  $\alpha = 1^-$ We constructed a space  $\Omega^1_{\alpha}$  of (Lie algebra valued) 1-forms s.t. 1. For each  $A \in \Omega^1_{\alpha}$ , one can define  $hol_{\gamma}(A)$ 2.



3.  $\Omega^1_{\alpha}/\mathcal{G}^{\alpha}$  is Polish 4. GFF  $\in \Omega^1_{\alpha}$ 

#### Sketch of proof.

1. Start with functions from  $\{\text{line segments}\}\ \text{to }\mathbf{R}.$ 

$$\|A\|_{lpha-gr} = \sup_{\ell} rac{|A(\ell)|}{|\ell|^{lpha}} \qquad (lpha = 1^-)$$

2. Changes are small when slightly turning directions

$$\|A\|_{lpha- ext{vee}} = \sup_{\ell,ar{\ell}} rac{|A(\ell)-A(ar{\ell})|}{ ext{Area}(\ell,ar{\ell})^{rac{lpha}{2}}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

3.  $\Omega^1_{\alpha}$  = closure of smooth 1-forms under above two norms.

Sketch of proof (continued).

- 4. For a triangle *P*, one has  $|A(\partial P)| \le ||A||_{\alpha} \operatorname{Area}(P)^{\frac{\alpha}{2}}$
- 5. Approximate holonomy along smooth  $\gamma$  by line segments

6.  $\partial_t A = \Delta A + \xi$  and GFF in  $\Omega^1_{\alpha}$  (rebuild Schauder + Kolmogorov)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

#### SPDE (linear and trivial example)

2D stochastic abelian YM:  $A = (A_1, A_2)$ ,  $F_A = dA$  and d = curl.

$$S(A) = \int_{\mathbf{T}^2} (dA)^2 dx$$
$$\partial_t A = -d^* dA + \xi$$

Gauge invariance:  $\tilde{A}(t,x) := A(t,x) + df(x)$  satisfies same equation. Problem: not elliptic. (Recall  $\Delta = -d^*d - dd^*$ .)

#### "Donaldson-DeTurck trick":

A calculation: Let  $\partial_t B = \Delta B + \xi$  and  $A_t := B_t + \int_0^t dd^* B_s ds$ Then,  $\partial_t A = \Delta B + \xi + dd^* B = -d^* dB + \xi = -d^* dA + \xi$ .

• time-dependent gauge transformations.

#### SPDE: 1st try to nonlinear case

[Shen'18] abelian YM couple Higgs:  $\int_{\mathbf{T}^2} (\operatorname{Curl} A)^2 + |D^A \Phi|^2 dx$ 

- 1. Discretize (by lattice gauge theory to preserve gauge symmetry)
- 2. Renormalize (without breaking gauge symmetry)
- 3. Take limit (the gauge invariant dynamic)

$$(D_j^{A^{\varepsilon}}\Phi^{\varepsilon})(x) = \varepsilon^{-1} \Big( e^{-i\varepsilon\lambda A^{\varepsilon}(x,x+\mathbf{e}_j)} \Phi^{\varepsilon}(x+\mathbf{e}_j) - \Phi^{\varepsilon}(x) \Big)$$

$$\begin{cases} \partial_t A_1^{\varepsilon}(e) = \nabla_2^{\varepsilon} \nabla_2^{\varepsilon} A_1^{\varepsilon}(e) - \nabla_1^{\varepsilon} \nabla_2^{\varepsilon} A_2^{\varepsilon}(e) \\ + \varepsilon^{-1} \lambda \operatorname{Im} \left( e^{-i\varepsilon \lambda A_1^{\varepsilon}(e)} \Phi^{\varepsilon}(e_+) \bar{\Phi}^{\varepsilon}(e_-) \right) + \xi_1^{\varepsilon}(e) \\ \partial_t \Phi^{\varepsilon}(x) = \varepsilon^{-2} \left( \sum_{\mathbf{e}} e^{-i\varepsilon \lambda A^{\varepsilon}(x, x+\mathbf{e})} \Phi^{\varepsilon}(x+\mathbf{e}) - 4 \Phi^{\varepsilon}(x) \right) + \zeta^{\varepsilon}(x) \end{cases}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Theorem [S.'18]:  $(A^{\varepsilon}, \Phi^{\varepsilon})$  converges as  $\varepsilon \to 0$ . No renormalization for A! ( $\phi$  needs a  $-C_{\varepsilon}\phi_{\varepsilon}$  renormalization)

#### Non-abelian case

[Chandra-Chevyrev-Hairer-S. '20] Let  $\xi^{\varepsilon}:=\xi*
ho^{\varepsilon}$  (smooth mollification!)

$$\partial_t A^{\varepsilon}_{\mu} = \Delta A^{\varepsilon}_{\mu} + \sum_{\nu=1}^d [A^{\varepsilon}_{\nu}, 2\partial_{\nu}A^{\varepsilon}_{\mu} - \partial_{\mu}A^{\varepsilon}_{\nu} + [A^{\varepsilon}_{\nu}, A^{\varepsilon}_{\mu}]] - C^{\varepsilon}A^{\varepsilon}_{\mu} + \xi^{\varepsilon}_{\mu}$$

where  $C^{\varepsilon} \sim \frac{1}{\varepsilon}$  in d = 3 and  $C^{\varepsilon} \sim O(1)$  in d = 2.

Gauge invariance lost for  $\varepsilon > 0$ . For gauge transformation g,

$$\xi_{\varepsilon} \mapsto g\xi_{\varepsilon}g^{-1}$$
 and  $C^{\varepsilon}A^{\varepsilon} \mapsto C^{\varepsilon}(A^{\varepsilon} - gdg^{-1})$ 

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Theorem.  $\exists$  unique choice of  $C^{\varepsilon}$ , s.t. limit is gauge invariant



 $\partial_t A^{\varepsilon} = -d_{A^{\varepsilon}}^* F_{A^{\varepsilon}} - d_{A^{\varepsilon}} d^* A^{\varepsilon} + \xi^{\varepsilon} - C^{\varepsilon} A^{\varepsilon} \qquad \text{init.cond. } A^{\varepsilon}(0)$ If  $g_{\varepsilon}$  are (time-dependent) gauge transformations solving

$$g_arepsilon^{-1}\partial_t g_arepsilon = -D^*_{\mathcal{A}^arepsilon}(g_arepsilon^{-1}dg_arepsilon)$$
 init.cond.  $g_arepsilon(0)$ 

then  $B^arepsilon(t):=g_arepsilon(t)\circ A^arepsilon(t)$  satisfies

$$\partial_t B^{\varepsilon} = -d_{B^{\varepsilon}}^* F_{B^{\varepsilon}} - d_{B^{\varepsilon}} d^* B^{\varepsilon} + \underline{g_{\varepsilon}} \xi_{\varepsilon} g_{\varepsilon}^{-1} - C^{\varepsilon} (B^{\varepsilon} - g_{\varepsilon} dg_{\varepsilon}^{-1})$$

with initial condition  $B^{\varepsilon}(0) = g_{\varepsilon}(0) \circ A^{\varepsilon}(0)$ .

Key idea: Calculate renormalization for  $g_{\varepsilon}\xi_{\varepsilon}g_{\varepsilon}^{-1}$ . Conclusion:  $\exists 1$  choice  $C_{\varepsilon}$ , s.t. in the limit,  $(B, B(0)) \stackrel{law}{=} (A, B(0))$ .

Page 14/17

#### Hidden details...

1. Positive existing time (as a process on the orbit space)

2. 3D:  $\operatorname{hol}_{\gamma}(\mathcal{F}_{\delta}A)$  ( $F_{\delta}$  is deterministic YM flow) Orbit space defined by  $A \sim \overline{A}$  iff  $\mathcal{F}_{\delta}A \sim \mathcal{F}_{\delta}\overline{A}$  for some  $\delta > 0$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

## Hidden details...

3. New framework of regularity structures

Goal: vector-space-valued SPDEs coordinate-independently. Use category theory to transplant Hairer's original framework to new setting.

イロト 不得 トイヨト イヨト ニヨー

4. Couple gauge fields with other fields

### Unclear at the moment...

- couple fermionic fields
- manifolds rather than torus.
- construct long time / full space solutions.
- correlation decay / mass gap etc.
- 4D.

Thank you for your attention!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで