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a little fact:
1. Probability measure: = Le= V¥ dx
2. Stochastic process: dX; = —1V/(X)dt + dB;

N

w is invariant under X;
quantum field theory
1. Functional integral formulation: Prob(®) oc e=S(®).

2. Stochastic quantization formulation: 9;® = —g% + £

&: space-time white noise

Examples:
1. GFF: S(®) = [ 3|VO[ dx = 0:0=Ad+¢
2. S(®) = [ 3|Ve]? + 1o dx = 0:d = Ad — P34 ¢
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SPDE: one slide tutorial e s
Linear: 0;® = A® + £. Theorem: £ € C-% " anddeC T
Corollary: d > 2, ® is distribution. (GrFis invariant,)

Nonlinear: 0;u = Au+ v’ +&ind =2. FORMAL!
Orlle = A + u?—? + &
Let u. = (DE + Ve. (Recall ¢ € )
Otve = Ave + ¢§—? +2¢. v, + VE2

1. ®2 — E($2) converges in CO.
2. Solve v by classical PDE: v € C?~.
3. Theorem: renormalized equ has a limit solution u = ® + v.
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Definition of Yang-Mills model

Y UT?J

p / U ~ eeA
w

_\d
A = Zi:l A,'dX,'
(each A; value in Lie algebra i.e. skew-Hermitian)

Fa=dA+[A A

U(p) = UXy Uyz Uzw UWX
Prob(U) = eZPS(U(p))do—Haa,/Z Prob(A) o e~ IFal?

(S is real-valued, S(yxyil) = 5(x))

Gauge symmetry:
1. Lattice measure is invariant Uy, — g(x)Usxyg(y) ™!
2. In continuum formally invariant A — gAg~! — gdg™!
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Wilson loop observables

Lattice path +, holonomy hol,, = H{va}ev Uy .
Loop v, Wilson loop W, = Tr(hol,).

Smooth path v : [0,1] — R?, hol, = F(1) where dF = F - A(d)
Smooth loop, W, = Tr(hol,).

W, is gauge invariant.
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Challenges of YM:

1. make sense measure or observables in continuum
(related: gauge fixing, Gribov ambiguity, ghosts etc.)
2. large scale behavior:
i.e. construct measure on whole RY, decay of loop correlations
(related: confinement, area law, mass gap..)
3. many other problems, e.g. large N.
Earlier works in continuum:
[Gross, Driver, Sengupta, Levy..] 2d YM observables.
Many results in abelian cases (80s-00s).
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Our results in d =2 (and d = 3 in progress):
We construct stochastic quantization / Langevin dynamic of YM
0:tA = —dZFA —dad*A + &

|Fall®

for which e~ is formally invariant; more explicitly

O:Ai = DA + [Aj, 20,A; — OiA; + [A, All] + &

In particular

1. We built the orbit space {A}/G
2. We define the Markov process.
3. Gauge invariance of this process.

Stochastic: [Bern-Halpern-Sadun-Taubes'87] (physics)

Deterministic: Donaldson, Rade, Waldron, S.J.Oh etc.
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Space of orbits (state space) “{A}/G"

Questions to address:

? Want holonomies, but, distributions can’t integrate along curves.
(However, 2d GFF € C%~ can.)

7 1s “{A}/G" reasonable (e.g. Polish) for measure theory?

Theorem. Let d =2, a=1"
We constructed a space QL of (Lie algebra valued) 1-forms s.t.
1. For each A € Q1, one can define hol,(A)

2.
Cz cQlc ¢t
<~ ——
continuous distributions
3. QL/G* is Polish
4. GFF € QL
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Sketch of proof.
1. Start with functions from {line segments} to R.

A/ _
L L ICEY

2. Changes are small when slightly turning directions

||A|| = supw
avee 07 Area(ﬁ,ﬂ)%

3. QL = closure of smooth 1-forms under above two norms.
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Sketch of proof (continued).
4. For a triangle P, one has |A(9P)| < || AlloArea(P)2

5. Approximate holonomy along smooth + by line segments

6. 0:A = AA+¢ and GFF in QL (rebuild Schauder + Kolmogorov)
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SPDE (linear and trivial example)

2D stochastic abelian YM: A = (A1, A2), Fa = dA and d = curl.

S(A) = / (dA)?dx
T2
A= —d*dA+¢

Gauge invariance: A(t,x) := A(t,x) + df(x) satisfies same equation.

Problem: not elliptic. (Recall A = —d*d—dd".)

“Donaldson-DeTurck trick™:
A calculation: Let 9;:B = AB+ ¢ and Ay .= By + fot dd* Bsds
Then, A= AB+ &+ dd*B = —d*dB+ & = —d*dA + &.

e time-dependent gauge transformations.
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SPDE: 1st try to nonlinear case

[Shen'18] abelian YM couple Higgs: [7.(CurlA)? + |DAd|? dx

1. Discretize (by lattice gauge theory to preserve gauge symmetry)
2. Renormalize (without breaking gauge symmetry)

3. Take limit (the gauge invariant dynamic)

(D ®°)(x) = =7 (e M He0% (x +-¢)) — 0())

9Ai(e) = V3V3A7(e) — ViV3A3(e)
+e~ 1A Im (e*"s**‘f<e>¢f(e+)&>f(e,)> +£5(e)

0rde(x) = 72 ( Ze e*if)‘AE(X*X+e)¢E(X +e)— 4¢5(X)) +¢5(x)

Theorem [S18]: (A®, ) converges as ¢ — 0.
No renormalization for Al (& needs a —C.®. renormalization)
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Non-abelian case
[Chandra-Chevyrev-Hairer-S. '20] Let fs = f * pE (smooth mollification!)

d
OiA, = AA], + Z:[A8 20,A7, — A, + AL ALl -CAL + &
v=1 0
where C° ~ lind=3and C:~ O(1) ind=2.
Gauge invariance lost for € > 0. For gauge transformation g,

£ gég™t and  CA® — C5(A° —gdg™?)

Theorem. 3 unique choice of C¢, s.t. limit is gauge invariant

Page 13/17



OtA® = —dpFpe — da-d™A® + & — C°A° init.cond. A°(0)
If g. are (time-dependent) gauge transformations solving
gglatga = —D}k\e(ggldga) init.cond. g-(0)
then B°(t) := g.(t) o A°(t) satisfies

01B° = —dp.Fp- — dp-d*B* + g.{.g. ' — C°(B° — gdg )

with initial condition B*(0) = g-(0) o A*(0).

Key idea: Calculate renormalization for g.£.g- . Conclusion: 31
choice C, s.t. in the limit, (B, B(0)) ‘aw (A, B(0)).
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Hidden details...

1. Positive existing time (as a process on the orbit space)

2. 3D: hol,(FsA) (Fs is deterministic YM flow)
Orbit space defined by A ~ A iff F5A ~ F5A for some § > 0
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Hidden details...

3. New framework of regularity structures
Goal: vector-space-valued SPDEs coordinate-independently.
Use category theory to transplant Hairer's original framework
to new setting.

4. Couple gauge fields with other fields
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Unclear at the moment...

— couple fermionic fields

— manifolds rather than torus.

— construct long time / full space solutions.
— correlation decay / mass gap etc.

—4D.

Thank you for your attention!
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