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Two-dimensional random conformal geometry combines techniques in complex analysis and
stochastic analysis to study conformally invariant random objects in the plane. One of the
central notions — the Schramm–Loewner evolution (SLE) — is a one-parameter family
of random fractal planar curves without self-crossing. For some parameter values, SLE
curves are scaling limits of interfaces in two-dimensional critical lattice models giving a new
mathematical perspective to study 2D conformal field theory. Without invoking discrete
models, the family of SLE curves can be defined directly in the continuum and is uniquely
characterized by two seemingly weak properties: conformal invariance and domain Markov
property (which will be explained below). The fact that there is only one free parameter
in the definition of SLE is rooted in the universality of Brownian motion, one of the most
fundamental concepts in stochastic analysis.
This article will explain that a natural quantity associated with each Jordan curve —
Loewner energy — whose definition arises from SLE, is connected to the Kähler geometry
of universal Teichmüller space. Universal Teichmüller space T (1) is an infinite-dimensional
complex Banach manifold and a homogeneous space which contains all Teichmüller spaces
of hyperbolic surfaces. There are several equivalent ways to describe universal Teichmüller
space, one of which is by identifying it with a particular family of Jordan curves — quasicir-
cles. Universal Teichmüller space is endowed with many geometric structures; in particular,
it has an essentially unique homogeneous Kähler metric. None of those geometric structures
is directly related to stochastic processes. However, its Kähler potential, defined on the
connected component of the circle (i.e., Weil–Petersson Teichmüller space) and called the
universal Liouville action, surprisingly coincides with the Loewner energy.
The profound reason behind this identity, which is hard to believe to be mere coincidence,
is still largely mysterious. This article aims to give the background on Loewner energy, the
universal Liouville action, and the intuition behind the proof of the identity. We will also
discuss the implications of this link and the connections between Loewner energy and other
mathematical subjects.
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Conformally invariant simple random curves in the plane

Critical lattice models provide several important examples of conformally invariant random
self-avoiding curves. We mention loop-erased random walk, spin cluster interfaces in the
critical Ising model, the level line of a discrete Gaussian free field, etc. We would like to
describe what lattice size scaling limits of such curves may look like. Physicists predict
that conformal symmetries emerge for a wide-range of well-chosen statistical mechanics
models [2,17]. For instance, the simple random walk in Z2 converges in the scaling limit
to the planar Brownian motion, whose trajectory is indeed conformally invariant up to
reparametrization. However, since we deal with self-avoiding paths, any scaling limit should
still be non self-crossing and cannot be a Markov process. (The future path of a Markov
process only depends on the current location. For instance, Brownian motion hits itself
infinitely many times on arbitrarily small time interval.)
By considering properties expected from the discrete models as predicted by physics,
O. Schramm formulated a mathematical description of random simple curves with conformal
symmetries [22]. To make it more tractable, he first assumed that the random simple curve
connects two distinct boundary points (prime ends) a, b in a simply connected domain
D ⊊ C. We call such a simple curve a chord in (D; a, b) and oriented from a to b. This
setup will allow us to progressively slit open the curve starting from a, so that the remaining
part of the curve will be a chord connecting the endpoint of the slit and b.
One advantage of working in two dimensions is that there is a rich family of conformal maps,
given by biholomorphic functions (so that we may use single-variable complex analysis).
In particular, the Riemann mapping theorem states that there exists a conformal map φ

sending the simply connected domain D to the upper half-plane H = {z ∈ C : Im(z) > 0},
which maps a to 0 ∈ ∂H = R ∪ {∞} and b to ∞. Another choice of such conformal map
has to be of the form λφ for some λ > 0.
Schramm pointed out that the random simple chord has to satisfy two properties:

• Conformal invariance: The random chord γ in H connecting 0 to ∞ should have the
same law as its image under the map z 7→ λz for every λ > 0. This then allows us to
define the random chord in (D; a, b) as the preimage under φ.

• Domain Markov property: Chords of (H; 0, ∞) have a parametrization by capacity
(explained below). If we slit the random chord γ in (H; 0, ∞) from γ(0) = 0 up to γ(s)
and map conformally (H ∖ γ[0, s]; γ(s), ∞) to (H; 0, ∞), then the image of γ[s, ∞)
should have the same law as γ and be independent of γ[0, s], for every s > 0.

Indeed, many scaling limits of the interfaces in critical lattice models are proved to satisfy
these axioms, e.g., [22, 23, 26]. However, we do not need to invoke discrete models if we
use these two properties as the axiomatic definition of the random chord of interest in the
continuum. Schramm noticed that the Loewner transform [15] provides a perfect tool to
describe it. The Loewner transform encodes each (deterministic) chord in (H; 0, ∞) into a
continuous real-valued function. More precisely, we say that γ is parametrized by capacity
if the unique conformal map gt : H∖ γ[0, t] → H, normalized such that the expansion at
infinity is given by gt(z) = z + o(1), has in fact the next term in the expansion being 2t/z,
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Figure 1: The left arrow illustrates a scaling map, and the right arrow illustrates
the uniformizing conformal map from the slit domain onto the upper half-plane.
The law of the random chord should be identical in these three pictures.

namely,
gt(z) = z + 2t

z
+ o

(1
z

)
.

The image of the tip γ(t) of γ[0, t] under gt is denoted as Wt ∈ R. We denote by T ∈ [0, ∞]
the total capacity of γ. As t varies in [0, T ), t 7→ Wt is continuous and starting from W0 = 0.
We call W the Loewner driving function of γ.
It is a simple exercise to check that the two properties of the random simple chord above
translate into the properties of the random driving function W :

• W has the same law as the function t 7→ λWλ−2t, for every λ > 0;
• for every s > 0, t 7→ Wt+s − Ws has the same law as W and is independent of W |[0,s].

It turns out the only possible random continuous function satisfying these properties is of
the form of

√
κB, where B is the standard Brownian motion and κ ≥ 0. In fact, the second

property guarantees W to be a continuous Lévy process. The classification of continuous
Lévy processes tells us that it is of the form t 7→

√
κBt + at, for some a ∈ R. One may view

the classification as the manifestation of two most fundamental theorems in probability
theory: the law of large numbers (which explains the occurrence of the deterministic drift
t 7→ at), central limit theorem (which explains the occurrence of the Gaussian process√

kB). The first property then implies that λ−1a = a, which shows a = 0.
Schramm–Loewner evolution SLEκ in (H; 0, ∞) is the random curve whose driving function
is

√
κB, for κ ≥ 0. More precisely, when κ ≤ 4, SLEκ is indeed the random simple chord

with driving function
√

κB in the sense described above; for κ > 4, the Loewner driving
function does not define a growing slit γ[0, t] but a growing compact set Kt ⊂ H. In this
case, SLEκ is referred to the curve which carves out progressively the boundary of Kt (when
κ ≥ 8, SLEκ is a random space-filling curve) [20]. In this article, we will only consider the
case where κ ≤ 4, so we do not enter into further details to discuss the κ > 4 case. As we
explained above, SLEs are the only random chords which satisfy the conformal invariance
and domain Markov property. The SLEκ in another domain (D; a, b) is defined as the
preimage of SLEκ in (H; 0, ∞) under any conformal map φ : D → H sending respectively
a, b to 0, ∞.
We note that when κ = 0, SLE0 in (H; 0, ∞) is the imaginary axis and gt(z) =

√
z2 + 4t is

the corresponding conformal map H∖ i[0, 2
√

t] → H.
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Loewner energy and SLE

We will now slowly move out from the probability world by only looking at a deterministic
functional that arises from SLE. Schilder’s theorem states that the large deviation rate
function of (

√
κB)κ→0+ is given by the Dirichlet energy

I(W ) := 1
2

∫ ∞

0
Ẇ 2

t dt,

where Ẇt := dWt/dt. Roughly speaking, the large deviation rate function is the exponential
decay rate (as κ → 0+) of the probability of

√
κB staying close to a given a deterministic

real-valued function W (it is a rare event when W is not the constant 0 function):

−κ logP(
√

κB stays close to W ) ∼κ→0+ I(W ).

Figure 2: An illustration of the rare event of
√

κB being close to a deterministic
function W (whose graph is the solid red line). The blue curve is a simulation
of

√
κB with κ = 0.1 over 10000 steps.

Then it is not surprising that using an appropriate topology (proved in [18] for the Hausdorff
metric) that a similar large deviation principle holds for SLE0+: given a chord γ in the
domain (D; a, b),

−κ logP(SLEκ in (D; a, b) stays close to γ) ∼κ→0+ IC
D;a,b(γ). (1)

Here IC
D;a,b(γ) := I(W ) is called the chordal Loewner energy of γ, where W is the driving

function of φ(γ) and φ is any conformal map sending (D; a, b) onto (H; 0, ∞).
We can also generalize the Loewner energy to Jordan curves (simple loops) and denote
it as IL. This generalization will show more symmetries and we will focus on the energy
for Jordan curves from now on. It is a generalization of the chordal energy because of the
property:

IL(γ ∪ R+) = IC
C∖R+;0,∞(γ) (2)

for every simple chord γ in (C∖R+; 0, ∞). More precisely, let γ : [0, 1] → Ĉ = C∪ {∞} be
a continuously parametrized Jordan curve with γ(0) = γ(1). For every ε > 0, γ[ε, 1] is a
chord connecting γ(ε) to γ(1) in the simply connected domain Ĉ ∖ γ[0, ε].

Definition 1. The rooted loop Loewner energy of γ rooted at γ(0) is defined as

IL(γ, γ(0)) := lim
ε→0

IC
Ĉ∖γ[0,ε];γ(ε),γ(0)(γ[ε, 1]). (3)
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It turns out that the definition does not depend on the choice of the orientation of the
curve [30] nor on its root [21]. Therefore, we omit the root in the notation and (2) can
be seen by putting the root at ∞ and orient the curve from ∞ → 0 along R+. The
independence of the Loewner energy from the parametrization is not obvious from the
definition, since the chordal energies IC are defined using the Loewner driving function
which depends strongly on the past of the curve. This independence suggests that there must
be an intrinsic expression of the Loewner energy which does not use any parametrization of
the Jordan curve. The answer is indeed given by the identity with the universal Liouville
action that will be the subject of the next section.
We remark that since the Loewner energy is defined via uniformizing maps (to define
the driving function), it is invariant under conformal automorphisms of Ĉ (i.e., Möbius
transformations z 7→ az+b

cz+d). Moreover, the Loewner energy is zero if and only if γ is a circle
and Möbius transformations map a circle to a circle. Therefore, the Loewner energy may
be viewed as a quantity measuring the roundness of the unparametrized Jordan curve.
The loop energy is, as one may guess, related to the loop version of SLEκ, constructed
in [3, 32,34] and called SLEκ loop measure µκ. In this case, one may even not have to let
κ → 0+. A recent work [11] shows that for a fixed κ ≤ 4,

lim
ε→0

µκ (Oε(γ))
µκ (Oε(S1)) = exp

(
c(κ)
24 IL(γ)

)
, (4)

where c(κ) := (6 − κ)(3κ − 8)/2κ is the central charge (terminology coming from the
connection between SLE and conformal field theory) of SLEκ, S1 is the unit circle, and Oε

is a sort of ε-neighborhood of γ in the loop space. In physics terminology, (c(κ)/24)IL is
the action, or the Onsager–Machlup functional, of the SLEκ loop measure. On may also
check that as κ → 0+, c(κ) ∼ −24/κ and we recover the asymptotics similar to (1).

Identity with the Universal Liouville action

We will focus on the Loewner energy for Jordan curves (and forget about its relation to
SLE for a moment). The following theorem gives an equivalent expression the Loewner
energy in terms of only two conformal maps. Since the Loewner energy is invariant under
Möbius transformations, without loss of generality, we may assume that the Jordan curve
γ does not pass through ∞.

Theorem 2 (See [31, Thm. 1.4]). Let Ω (resp., Ω∗) denote the component of Ĉ ∖ γ which
does not contain ∞ (resp., which contains ∞) and f (resp., g) be a conformal map from
the unit disk D = {z ∈ Ĉ : |z| < 1} onto Ω (resp., from D∗ = {z ∈ Ĉ : |z| > 1} onto Ω∗).
We assume further that g(∞) = ∞. The Loewner energy of γ satisfies

IL(γ) = 1
π

∫
D

∣∣∣∣f ′′

f ′

∣∣∣∣2 d2z + 1
π

∫
D∗

∣∣∣∣g′′

g′

∣∣∣∣2 d2z + 4 log
∣∣∣∣ f ′(0)
g′(∞)

∣∣∣∣ =: S1(γ)
π

, (5)

where g′(∞) := limz→∞ g′(z) and d2z is the Euclidean area measure.

The quantity S1 is introduced in [27] under the name universal Liouville action. Its value
does not depend on the choice of f and g as long as g(∞) = ∞. A Jordan curve for
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which
∫
D |f ′′/f ′|2 d2z is finite is called a Weil–Petersson quasicircle. It turns out that∫

D |f ′′/f ′|2 d2z is finite if and only if
∫
D∗ |g′′/g′|2 d2z is finite. Hence, we have:

Corollary 3. A Jordan curve γ has finite Loewner energy if and only if γ is a Weil–
Petersson quasicircle.

Weil–Petersson quasicircles have well-defined arclength and have Hausdorff dimension one.
Therefore, finite Loewner energy curves are more regular than SLEκ curves, which have
Hausdorff dimension (1 + κ/8) ∧ 2 by [1]. This is not surprising as functions with finite
Dirichlet energy are also more regular than a Brownian path.
As mentioned above, the universal Liouville action does not depend on any special point
on the curve γ and has the advantage of involving only two conformal maps. Whereas to
define the Loewner energy through the driving function, one has to study the whole family
of uniformizing conformal mappings of the slit domains. However, the way of considering
the Jordan curve as a progressively growing slit (which closes up on itself) allowed us to
relate the Loewner energy to SLE curves.

Weil–Petersson Teichmüller space

The universal Liouville action arises from a very different context — Teichmüller theory.
Teichmüller spaces are introduced by Teichmüller to parametrize the family of complex
structures on a surface using quasiconformal mappings. In particular, the Teichmüller
space of a genus g ≥ 2 closed surface is homeomorphic to R6g−6. We are interested in the
universal Teichmüller space which contains all Teichmüller spaces of surfaces of negative
Euler characteristics, hence the name universal, which can also be represented by the class
of quasicircles.
More precisely, we first identify a Jordan curve γ with a homeomorphism of the unit circle
S1 = ∂D = ∂D∗ as follows. By Carathéodory theorem, any conformal map f : D → Ω
(resp., g : D∗ → Ω∗) extends continuously to a homeomorphism between the closures D → Ω
(resp., D∗ → Ω∗). In particular, f and g restricted to S1 define two homeomorphisms
S1 → γ. The welding homeomorphism compares these two homeomorphisms and is defined
as the circle homeomorphism φ := g−1 ◦ f |S1 .
The converse operation — solving the conformal welding problem — consists of finding a
Jordan curve γ and corresponding conformal maps f and g, whose welding homeomorphism
g−1 ◦ f |S1 is a given circle homeomorphism φ. We note that if γ is a solution, then
A ◦ γ is also a solution (by replacing f by A ◦ f and g by A ◦ g), where A is any Möbius
transformation of Ĉ. Solution may not exist, and if one exists, it may not be unique (up to
post-composition by Möbius transformations), see, e.g., [5]. The complete characterization
of circle homeomorphisms for which there is a unique solution to conformal welding is an
open question, [7] shows that the question is indeed hard and the corresponding Jordan
curves form a set which is not even Borel measurable.
However, classical results in quasiconformal mappings by Beurling and Ahlfors [4] show
that if the circle homeomorphism is quasisymmetric, then the solution to the conformal
welding problem exists and is unique up to post-composition by Möbius transformations.
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The corresponding Jordan curves are called quasicircles. Let

QS(S1) :=
{

φ ∈ Hom(S1) : ∃M > 1, ∀θ ∈ R, ∀t ∈ (0, π), 1
M

≤
∣∣∣∣∣φ(ei(θ+t)) − φ(eiθ)
φ(eiθ) − φ(ei(θ−t))

∣∣∣∣∣ ≤ M

}

denote the group of quasisymmetric circle homeomorphisms. Let φ ∈ QS(S1). We fix a
normalization to the solution of welding problem for φ by assuming that the conformal
map f satisfies f(0) = 0, f ′(0) = 1 and f ′′(0) = 0 and put no condition on g (except
that g(D∗) = Ĉ ∖ f(D)). In other words, we consider the welding homeomorphism to
be in the homogeneous space Möb(S1)\ QS(S1), where Möb(S1) is the group of Möbius
transformations preserving S1 (since g can be replaced by g ◦B for any B ∈ Möb(S1)). The
homogeneous space T (1) := Möb(S1)\ QS(S1) is called the universal Teichmüller space.
Universal Teichmüller space has a structure of infinite dimensional complex Banach manifold
such that the group QS(S1) acts on the right on T (1) holomorphically. One wonders whether
it can be further equipped with a Kähler metric, namely, a symplectic form ω(·, ·) and
Riemannian metric ⟨·, ·⟩ that are invariant under the right action and compatible with the
complex structure (encoded in an operator J on the tangent bundle such that J2 = − Id
which plays the role of “multiplication by i”). Being compatible means ω(·, J(·)) = ⟨·, ·⟩.
This question has been addressed by string theorists [8] and [33] who consider only the
smooth part Möb(S1)\ Diff∞(S1) of the universal Teichmüller space without having to
worry about any convergence issue on this infinite dimensional manifold. It turns out there
is a unique Kähler metric up to a scaling factor.
Let us explain briefly how to derive this Kähler metric (also ignoring the convergence
question). Concretely, the tangent space at [Id] ∈ T (1) consists of vector fields Vect(S1) on
S1 with Fourier expansion:

v =
∑

n̸=±1,0
vnen :=

∑
n̸=±1,0

vneinθ ∂

∂θ
satisfying vn = v−n.

We have omitted the Fourier modes for n ∈ {±1, 0} as they generate the Lie algebra of
Möb(S1).
The almost complex structure J : Vect(S1) → Vect(S1) (such that J2 = −I) induced from
the complex structure is given by the Hilbert transform [16]:

Jv = i
∞∑

n=2
vnen − i

−2∑
n=−∞

vnen.

The family {en := einθ∂/∂θ}n ̸=±1,0 generates the complexification of Vect(S1):

VectC(S1) = {
∑

n̸=±1,0
unen | un ∈ C},

with the Lie bracket
[em, en] = i(n − m)en+m.

Theorem 4 (See [8]). Up to a scaling factor, there is a unique homogeneous Kähler metric
on Möb(S1)\ Diff∞(S1). The symplectic form (closed and non-degenerate 2-form) is given
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by ∀u, v ∈ Vect(S1)

ω(u, v) = −ω(v, u) = −α Im
( ∞∑

n=2
(n3 − n)unvn

)
,

where α ∈ R+. The symmetric 2-tensor ⟨·, ·⟩ that is compatible with ω and J , in the sense

⟨u, v⟩ =ω(u, Jv) = α Re
( ∞∑

n=2
(n3 − n)unvn

)

is positive and definite. This metric is called the Weil–Petersson metric.

Proof. Assume that ω is a homogeneous symplectic form. Since ω is closed,

0 = dω(em, en, ep) = em(ω(en, ep)) + en(ω(ep, em)) + ep(ω(em, en))
− ω([em, en], ep) − ω([en, ep], em) − ω([ep, em], en).

By homogeneity, the first three terms on the right-hand side vanish and we have

ω([em, en], ep) + ω([en, ep], em) + ω([ep, em], en)) = 0. (6)

Moreover, ω has kernel spanned by e−1, e0 and e1. From these constraints we can determine
ω as follows.
By taking p = 0, (6) gives that (n + m)ω(em, en) = 0. Therefore ω(em, en) = 0 when
m ̸= −n. We let am := ω(em, e−m). Take p = −m − 1, n = 1, (6) gives

(1 − m)am+1 + (m + 2)am = 0

which implies there exists α ∈ C such that am = iα(m3 − m)/2 for all m ≥ 2 (hence, for all
m ∈ Z).
When u, v ∈ Vect(S1), we have u−m = um and similarly for v. Therefore,

ω(u, v) = iα

2
∑

m ̸=±1,0
(m3 − m)umv−m = −α Im

( ∞∑
m=2

(m3 − m)umvm

)

and the compatible symmetric tensor

⟨u, v⟩ := ω(u, Jv) = α Re
( ∞∑

m=2
(m3 − m)umvm

)
.

We obtain α > 0 from the assumption that ⟨·, ·⟩ is positive definite.

Takhtajan and Teo [27] defined and extended rigorously the infinite-dimensional Kähler
manifold structure and the Weil–Petersson metric to T (1). In fact, the subspace of
u ∈ Vect(S1) such that ⟨u, u⟩ < ∞ coincides with the H3/2 Sobolev space of vector fields
(which is strictly smaller than the tangent space of T (1) which is given by the space of
Zygmund vector fields). The image of H3/2 under the right action by QS(S1) on T (1)
defines a tangent subbundle.
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Theorem 5 (See [27]). The connected component T0(1) of the integral manifold containing
[Id] ∈ T (1) — called the Weil–Petersson Teichmüller space — is a complete, infinite-
dimensional Kähler–Einstein manifold with negative curvatures. Moreover, [φ] ∈ T0(1) if
and only if φ = g−1 ◦ f |S1 where

∫
D |f ′′/f ′|2 d2z < ∞.

Therefore, T0(1) is the completion of Möb(S1)\ Diff∞(S1). Moreover, a Jordan curve is
associated with an element in T0(1) via conformal welding if and only if it is a Weil–Petersson
quasicircle. There are many equivalent characterizations of the elements in T0(1), see,
e.g., [6] for an extensive summary. In particular, Shen [25] showed that [φ] ∈ T0(1) if and
only if log φ′ is in the Sobolev space H1/2. Kähler metrics admit locally defined Kähler
potential. Here, the Weil–Petersson metric has a globally defined potential given by the
universal Liouville action:

Theorem 6 (See [27, Cor. II.4.2]). The universal Liouville action S1 : T0(1) → R+ is a
Kähler potential for the Weil–Petersson metric. That is, up to a positive scaling factor,

i∂∂̄S1 = ω,

where ω is the symplectic form in Theorem 4.

How do we come up with the identity?

We now explain how we could guess the identity between the Loewner energy and the
universal Liouville action in Theorem 2 using ideas from random conformal geometry. The
first step of the proof is to show the following identity for a curve passing through ∞.

Theorem 7 (See [31, Thm. 1.1]). If γ is a Jordan curve passing through ∞, then

IL(γ) = 1
π

∫
H

|∇ log
∣∣f ′∣∣ |2d2z + 1

π

∫
H∗

|∇ log
∣∣g′∣∣ |2d2z = 1

π

∫
H

∣∣∣∣f ′′

f ′

∣∣∣∣2 d2z + 1
π

∫
H∗

∣∣∣∣g′′

g′

∣∣∣∣2 d2z

where f and g map conformally the upper half-plane H and the lower half-plane H∗ onto H

and H∗, the two components of C∖ γ respectively, while fixing ∞.

This theorem can be viewed as the finite energy analog of the quantum zipper coupling
between SLE and Gaussian free field (GFF) [12, 24] that we now explain. We do not make
rigorous statements and only argue heuristically here.
A quantum surface is a domain D equipped with a Liouville quantum gravity (

√
κ-LQG)

measure, defined using a regularization of e
√

κΦd2z, where
√

κ ∈ (0, 2), and Φ is a Gaussian
field with the covariance of a free boundary GFF. GFF is a random real-valued Schwartz
distribution defined on the two-dimensional domain D and is the analog of Brownian motion
by replacing the time interval by D. Schilder’s theorem for Gaussian measures shows that
the large deviation rate function for

√
kΦ, as κ → 0+, is the Dirichlet energy on D, defined

for all φ ∈ W 1,2
loc as

DD(φ) := 1
4π

∫
D

|∇φ|2d2z ∈ [0, ∞].

If DD(φ) < ∞, we say that φ ∈ E(D).
We use the following dictionary illustrating the analogy between the concepts in random
conformal geometry (left column) and their large deviation counterparts (right column).
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SLE/GFF with κ → 0+ Finite energy
SLEκ loop Jordan curve γ with IL(γ) < ∞

i.e., a Weil–Petersson quasicircle
Free boundary GFF

√
κΦ on H (on C) 2u ∈ E(H) (2φ ∈ E(C))

√
κ-LQG on quantum plane ≈ e

√
κΦd2z measure on C: e2φ d2z, φ ∈ E(C)

√
κ-LQG on quantum half-plane on H measure on H: e2u d2z, u ∈ E(H)

Quantum zipper coupling: A Weil–Petersson quasicircle γ cuts C
“ SLEκ cuts an independent quantum with measure e2φd2z, where φ ∈ E(C),
plane e

√
κΦd2z into two independent into half-planes with measure e2ud2z

quantum half-planes e
√

κΦ1 , e
√

κΦ2 ” and e2vd2z with u ∈ E(H), v ∈ E(H∗),
and IL(γ) + DC(2φ) = DH(2u) + DH∗(2v)

In the last line, two domains D and D′ equipped with a measure are considered equivalent
if there exist a conformal map D → D′ such that the measure on D′ equals the pushforward
of the measure on D. In particular, if a Jordan curve γ cuts C into two domains H and
H∗ as above and f and g are the conformal maps in Theorem 7, then e2φd2z on H and on
H∗ are equivalent, respectively, to e2ud2z on H and e2vd2z on H∗ where

u = φ ◦ f + log
∣∣f ′∣∣ , v = φ ◦ g + log

∣∣g′∣∣ .
The identity IL(γ) + DC(2φ) = DH(2u) + DH∗(2v) is more general than Theorem 7 (which
corresponds to the case where φ ≡ 0) and we argue heuristically as follows. From the
quantum zipper coupling, one expects that using an appropriate choice of topology and for
small κ,

“P(SLEκ loop stays close to γ,
√

κΦ stays close to 2φ)
= P(

√
κΦ1 stays close to 2u,

√
κΦ2 stays close to 2v)”.

(7)

We obtain from the independence between SLE and Φ, the large deviation principle of SLE
(1), and the large deviation principle for GFF (Schilder’s theorem for Gaussian measure)

“ lim
κ→0

−κ logP(SLEκ stays close to γ,
√

κΦ stays close to 2φ)

= lim
κ→0

−κ logP(SLEκ stays close to γ) + lim
κ→0

−κ logP(
√

κΦ stays close to 2φ)

= IL(γ) + DC(2φ)”.

On the other hand the independence between Φ1 and Φ2 gives

“ lim
κ→0

−κ logP(
√

κΦ1 stays close to 2u,
√

κΦ2 stays close to 2v)

= DH(2u) + DH∗(2v)”.

We obtain the identity IL(γ) + DC(2φ) = DH(2u) + DH∗(2v) from (7). Theorem 7 follows
by taking φ ≡ 0.
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One technical difficulty to make this argument rigorous lies in choosing the right topologies so
that these three equations in quote marks hold. However, once we have guessed the identity
in Theorem 7, the actual proof is purely analytic and straightforward (without mentioning
SLE or GFF) that we discuss now. For interested readers, we remark that starting from
Theorem 2, more identities around the Loewner energy expanding the dictionary above
between random conformal geometry and finite energy objects, are explored in [28,29]. The
proofs there are also entirely analytic and such a dictionary has provided inspiration for
proving theorems on both sides.

Outline of the proof of Theorem 2

To show Theorem 2 (where the Jordan curve does not pass through ∞), we prove first
Theorem 7 without invoking SLE or GFF. For this,

• we show first the identity holds when the curve is of the form of R+ ∪ η, where η is a
chord in (C ∖ R+; 0, ∞) with driving function W : R+ → R. More specifically, we
treat the following cases:

– when Wt = at, for t ∈ [0, T ] and Wt = aT for t ≥ T (the computation is
technical but straightforward in this case);

– when W is piecewise linear;
– when W satisfies I(W ) < ∞, we approximate W by piecewise linear functions.

• We deduce the identity for curves of the form [M, ∞] ∪ η where η is a chord in
(C∖ [M, ∞); M, ∞). Then we let M → ∞.

The second step aims at giving a more symmetric description of the Loewner energy by
viewing the Jordan curve in the sphere S2, so that the point ∞ plays no special role. We
equip S2 with a Riemannian metric g = e2φg0, conformally equivalent to the round metric
g0 (the metric induced from S2 ⊂ R3). Let γ ⊂ S2 be a smooth Jordan curve dividing S2

into two components D1 and D2. Denote by ∆Di,g the Laplace–Beltrami operator with
Dirichlet boundary condition on (Di, g). We introduce the functional H(·, g) on the space
of smooth Jordan curves:

H(γ, g) := log det′
ζ(−∆S2,g) − log volg(S2) − log detζ(−∆D1,g) − log detζ(−∆D2,g), (8)

where detζ denotes the zeta-regularized determinant.

Theorem 8 (See [31, Thm. 7.3]). We have the following results:

(i) The functional H is conformally invariant, i.e., H(·, g) = H(·, g0);
(ii) Let γ be a smooth Jordan curve on S2. We have the identity

IL(γ) = 12H(γ, g) − 12H(C, g) = 12 log detζ(−∆D1,g)detζ(−∆D2,g)
detζ(−∆D1,g)detζ(−∆D2,g) , (9)

where C is any circle and D1 and D2 are the two components of the complement of C.

Let us make some remarks:
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• Since the Loewner energy is nonnegative, (ii) implies that circles minimize H(·, g)
among all smooth Jordan curves. This result was proved previously by [10] using
variational method.

• We assumed the curve γ to be smooth so that detζ(−∆) is well-defined. This
assumption can possibly be weakened.

• The Polyakov–Alvarez formula compares detζ(−∆Di,g) to detζ(−∆Di,g) and involves
conformal maps from Di to Di. From this we deduce the result by comparing (9) to
the expression in Theorem 7.

Finally, for a smooth Jordan curve which does not pass through ∞, we use Theorem 8 and
Polyakov–Alvarez formula again to deduce the identity in Theorem 2. The identity for
an arbitrary bounded Jordan curve follows from an approximation argument by smooth
Jordan curves.

Further discussions

We mention that there are other identities between the Loewner energy and mathematical
objects that are seemingly far away. We now give two examples. Theorem 2 suggests there
should be a link between SLE and these objects. However, the link is widely unknown.
Grunsky operator and Coulomb gas. With each Jordan curve γ is associated a Grunsky
operator Gγ , defined explicitly using the coefficients of a conformal map g from D∗ to Ω∗.
See, e.g., [19]. It is a classical object in geometric function theory and many properties of γ

are equivalent to the operator-theoretic properties of Gγ . It was shown in [27] that γ is
Weil–Petersson if and only if Gγ is Hilbert–Schmidt which is equivalent to det(Id −G∗

γGγ)
being well-defined. More surprisingly, Theorem 2 and [27] together imply that

IL(γ) = −12 log det(Id −G∗
γGγ).

Using this identity, [13, 14] showed that the Loewner energy appears in the constant term
of large n asymptotics of the free energy of n-particle Coulomb gas confined on γ and in Ω.
Renormalized volume. We saw that the Loewner energy is invariant under Möbius
transformations of Ĉ. Since Möbius transformations extend to isometries of the hyperbolic
3-space H3 (whose boundary at infinity is identified with the Riemann sphere Ĉ), it is
natural to wonder if there is a geometric quantity in H3 that is equal to the Loewner energy
(question raised in [6]). The answer is positive. It is shown recently in [9] that the Loewner
energy of γ equals the renormalized volume of the 3-manifold Nγ in H3 bounded by the
two Epstein surfaces Σ and Σ∗ (these are surfaces in H3 determined and bounded by γ):

IL(γ) = 4
π

(
vol(Nγ) − 1

2

∫
Σ∪Σ∗

HdA

)
,

where H is the mean curvature on Σ and Σ∗ and dA is the area form induced from (the
hyperbolic metric in) H3. The result uses the fact that IL is a Kähler potential for the
Weil–Petersson metric.
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